项目异常问题解决

项目异常问题解决这天 程序抛出了一个WARN日志: createSecureRandom Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [43,844] milliseconds. 这意味着SHA1PRNG算法导致项目启动多花费了43秒,这是基于SHA-1算法实现且保密性较强的伪随机数生成器 1.从tomcat层面上解决: 在catalina.sh中加入这么一行:-Djava.security.egd=file:/dev/./urandom 2.从java层面解决 打开$JAVA_PATH/jre/lib/security/java.security这个文件,将下面的内容:
项目异常问题解决2019-02-28鱼鱼

算法:Trie(前缀树、字典树)

算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符
算法:Trie(前缀树、字典树)2021-01-19鱼鱼

算法:广度优先搜索(BFS)(最短路径)

算法:广度优先搜索(BFS)(最短路径)我们先看一个案例: 遍历一个树结构,按层次输出树的节点内容,即:欲求 A B C D E F 实现方式便是从根节点(A)向下遍历,先获取A,其次是A的子节点B和C,其次是B的子节点D…… 这种遍历树结构或者图结构的方法被称作广度优先搜索(BFS),与之对应的先遍历到最下层子节点的是深度优先 BFS核心采用队列的数据结构,例如上面的树结构中,解法为: A进队列->A出队列 B、C进队列->B出队列 D进队列 ->C出队列 E、F进队列-> D、E、F出队列 如果想要区分层次边缘,使用count参数即可 解法步骤(蓝色部分为已经处理完的节点):
算法:广度优先搜索(BFS)(最短路径)2020-06-05鱼鱼

动态路由数据源(多租户)解决方案

动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)
动态路由数据源(多租户)解决方案2021-01-07鱼鱼

ELK全家桶基本使用(I)文件收集Filebeat

ELK全家桶基本使用(I)文件收集FilebeatFilebeat是Elastic中的轻量文件收集系统,相比于功能更强悍的Logstash,当我们需求很单一,读取文件内容且对文件内容没有过多复杂处理时,最好使用FileBeat取代Logstash,以免造成不必要的内存开销 文档链接 Filebeat负责收集文件并发送给下游服务 核心行为包含输入、处理过滤和输出 当然也有集成好配置的模块,通过模块与Es和Kibana链接可以直接在Kibana上看到组件的可视化 同时不难看出Filebeat其实对数据库的支持不是很健壮 截止7.6版本,开源的Filebeat可支持以下几种消息输入类型: log 用得最多的输入类型; stdin 标准的输入,从process或是piepline读取(可理解为脚本运行通道直接输入),一旦配置了这种input方式,其他 input将不再生效文档地址;
ELK全家桶基本使用(I)文件收集Filebeat2020-03-16鱼鱼

排坑指南-异步操作HttpServletRequest丢失Cookie

排坑指南-异步操作HttpServletRequest丢失Cookie遇到了一个很奇怪的bug:请求鉴权失败,因为通过Request对象获取到的Cookie中没有数据 经过debug调用request.getCookies()方法返回了null值,但是header属性的cookie却能拿到用户的有效cookie(request.getHeader("cookie")),其中缘由,且慢慢道来 我们可以在web项目中通过Request对象很方便的获取Cookie对象: 但其内部实现其实有一层缓存逻辑,从名为"cookie"的请求头中读取并处理数据转为Cookie对象并不是个省时事,在org.apache.catalina.connector.Request类中可以看到如下代码实现:
排坑指南-异步操作HttpServletRequest丢失Cookie2020-11-11鱼鱼

ES快速入门(2)——Tokenizer、Reindex

ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
ES快速入门(2)——Tokenizer、Reindex2020-09-05鱼鱼

Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听

Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听查看源码的顺序就见仁见智了,比较普遍的做法是从IoC入手,了解容器注入的每一个环节,掌握大致的流程 由于使用的是Spring,所以在这里我们引入比较古老的xml配置文件进行bean的配置,首先定义一个bean: 配置描述bean的xml,核心只有一行: 这样一来就可以使用BeanFactory这个容器来注入bean并使用了: 本来有封装好的XmlBeanFactory,这一类现在已经被弃用了,所以采用了他的父类DefaultListableBeanFactory;当然,也可以使用更加方便和常用的ApplicationContext: 当然从xml文件读取bean的配置只是其中一种目前用的不多的加载方式,还有基于包扫描等加载bean的方法,此处仅为理解IoC的基本使用
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听2020-08-04鱼鱼

mysql orderby排序

mysql orderby排序where 字段和orderby字段组成一个联合索引,这个样一个普通业务的order只需要通过这个索引就能确定排序顺序,不需要额外的临时表来计算字段的排序 可以通过配置max_length_for_sort_data改变mysql判断采取方式 全字段排序 将命中的行的所有要查询的结果集都放到排序的临时表内,排序后将数据结果集返回 rowid 排序 将命中的行的排序字段和主键id放到临时表内排序,再根据排序后的主键id进行一次回表查询 虽然有联合索引,但是当where的条件不止一个时候,order by就会失效,可以采取多次查询结果,然后在服务中排序的方式来解决问题
mysql orderby排序2020-05-17yangwcn

1
空2025-09-05鱼鱼

安全框架的使用:Shiro

安全框架的使用:ShiroShiro与Sping Security均是java的安全框架,主要用于处理用户身份验证和授权 常见场景为用户系统登录 Shiro易用性强,提供了认证,授权,加密,和会话管理功能 Shiro的三大核心组件 : Subject:即当前用户概念,不止代表着某用户,也可以是进程或任何可能的事物 SecurityManager:即所有Subject的管理者,可以把他看做是一个Shiro框架的全局管理组件,用于调度各种Shiro框架的服务 作用类似于SpringMVC中的DispatcherServlet,用于拦截所有请求并进行处理 Realm:Realm是用户的信息认证器和用户的权限认证器,我们需要自己来实现Realm来自定义的管理我们自己系统内部的权限规则
安全框架的使用:Shiro2019-09-29鱼鱼

MYSQL的索引、引擎的实现原理和应用

MYSQL的索引、引擎的实现原理和应用本篇主要介绍数据库MySQL的索引实现原理,包括B+ Tree的原理,顺带提到了数据库的常用引擎 我们常见的数据库引擎就是InnoDB,还有另外一个常见一个引擎叫做MyISAM,这里着重介绍着两个引擎,执行show engines,可见MySQL所有的引擎如下: InnoDB采用行级锁,不会记录表中的数据个数,支持外键,高并发下使用事务的首选引擎,也是5.5之后MySQL的默认引擎(之前采用MyISAM),可以通过bin-log日志回滚数据,所以它比较适合处理数据量大的数据 PS:InnoDB最初不支持全文索引,在MySQL 5.6版本后添加了支持 MyISAM跟InnoDB截然相反,它采用表锁,记录了表的条目数,SELECT COUNT可以直接查看表中数据个数,支持FULLTEXT索引,不支持外键和事务,不能进行数据恢复操作,他比较适合频繁插入的数据,或是读操作远大于写操作时
MYSQL的索引、引擎的实现原理和应用2019-09-15鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}