并发之AQS全解析

并发之AQS全解析我们知道juc(java.util.concurrent)包下有很多实用的类,提供了很多并发工具,例如线程池、原子类、并发工具、信号量工具、锁等,可以说基本实现都为悲观锁,底层原理基本都使用了AQS(AbstractQueuedSynchronizer),AQS不是一种概念,是并发中实打实的工具类 本篇文章针对AQS做解析 AQS是多线程访问共享资源的同步器框架 AQS的资源可以是独占的也可以是共享的 我们先来简单看一下它的使用方式和ApI(因为是抽象类,是不能直接使用的),下图是AQS的整体脉络 AQS核心就是一个状态值state,同时维护了一个线程的阻塞队列,队列的节点为有两种状态:SHARED(共享)和EXCLUSIVE(独占),节点状态有五种:
并发之AQS全解析2021-03-12鱼鱼

代理与nginx

代理与nginx代理指接受请求但是不由代理服务器自己处理请求而是直接转发给指定服务器(或是根据负载均衡算法转发给集群部署中的某一台服务器),然后由代理服务器接收请求结果并返回给客户端 指客户端的代理处理方式,指用户通过代理服务器访问指定的网站、服务,最常见的应用是翻墙,并且使用这种方式可以使客户端匿名访问 指服务端的代理处理方式,多个用户在访问网站服务时,实际访问的是反向代理服务器(如nginx),反向代理服务器将请求内容转发给服务集群,最常用于服务器集群负载均衡和避免内网信息暴露 总之,正向代理是对服务端隐藏了客户端信息,反向代理则正相反,有一张图可以很好地概括这两个代理概念(图源知乎,侵删)
代理与nginx2019-05-11鱼鱼

网络时延、异步IO、Pipeline

网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
网络时延、异步IO、Pipeline2021-04-21鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

用Quartz 写定时任务

用Quartz 写定时任务Quartz是OpenSymphony开源组织在Job scheduling领域的一个开源项目,是一款清新友好的任务调度框架 Quartz两大基本功能是job和SimpleTrigger(作业和触发器) 核心的是Scheduler类 有以下几个相关类: Scheduler:定时任务调度; Job:任务类需要实现的接口; JobDetail:Job的实例,被Scheduler执行的是JobDetail,而不是Job; Trigger:触发Job的执行; JobBuilder:定义和创建JobDetail实例的接口; TriggerBuilder:定义和创建Trigger实例的接口;
用Quartz 写定时任务2019-06-18鱼鱼

阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解

阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解CAT是美团点评的一个基于Java开发的异常和性能监控项目,github地址:https://github.com/dianping/cat 本篇文章不是对CAT本身的源码拆解,而是基于本人依赖CAT client开发的代理项目进行拆解,但是并不会纰漏任何技术细节 CAT当前已有很多不同语言的Client,当然暂且是不 CAT本身是通过CAT client收集数据并上报至CAT server,server会进行并,共有六种常见数据格式:Transaction、Event、Problem、Metric、HeartBeat、调用链标记,其实如果不考虑复杂的处理(譬如Metric是可以基于指标生成折线图,Problem可以根据具体的异常类型追溯到相应的会话Track)除去Transaction剩余的数据格式都可以理解为特殊的Event
阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解2020-07-19鱼鱼

IO与NIO

IO与NIO我们都知道IO流传输,其实IO模型有很多,例如BIO、NIO、AIO等,传统的IO都是同步的 IO为各种流操作 IO操作分类 I IO操作分类 II 其中,输入流可以为InputStream和Reader,分别为字节流和字符流,对应地,输出流为OutputStream和Writer,具体的使用在此不详述 NIO是IO模型中后推出的新IO模型 NIO并不一定是多线程的,但是NIO是多管道的,利用缓冲作为中间介质进行数据传输,运用的其实是多路复用技术,它恰恰是通过减少线程数量从而减少上下文的频繁切换,提高性能 Channel:通道,相当于一个连接,不能直接输出数据,只能与Buffer交换数据
IO与NIO2019-05-11鱼鱼

Spring源码解析(3) IoC容器配置读取和容器refresh

Spring源码解析(3) IoC容器配置读取和容器refresh在文章Spring源码解析(I) 基于SSM看Spring的使用和Spring启动监听中,讲述了web容器启动后会触发的方法实现中生成Context的部分,回顾下核心方法: 我们已经分析到了0.处,他对我们生成的容器做了一个判断,对于web.xml监听初始化的Context,其生成的WebApplicationContext都是ConfigurableWebApplicationContext的子类,所以必然会进入if分支 首先通过loadParentContext先加载了父容器,默认是null 然后调用了configureAndRefreshWebApplicationContext方法进行初始化和配置项的读取
Spring源码解析(3)  IoC容器配置读取和容器refresh2020-08-09鱼鱼

ooo

ooo拆箱:包装类-》基本数据类型 Integer Byte -127- 127是以缓存数组指向相同对象,之外的默认new 模块化 完全解耦 #预编译 $直接用 $内容手动干涉 Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor SimpleExecutor:每执行一次update或select,就开启一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor:执行update或select,以sql作为key查找Statement对象,存在就使用,不存在就创建,用完后,不关闭Statement对象,而是放置于Map内,供下一次使用
ooo2019-04-02鱼鱼

盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼

分布式系统中的CAP原则与BASE原则

分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性
分布式系统中的CAP原则与BASE原则2019-09-29鱼鱼

扫盲——加密那些事

扫盲——加密那些事扫盲加密解密算法 日常开发中我们经常接触MD5算法,以此进行简单的文件完整性校验或者是后台密码验证,MD5是最常见也是最简单快捷的散列算法,常用于参数或文件完整性校验,譬如网络请求发起方与接收方分别对参数做MD5编码,一旦不一致便判断请求被篡改从而拒绝该请求,从而保证信息安全,编码后的字符串是编码前文本的一个简要梗概,因此它也被称作是信息摘要算法 这个算法的特点就是不可逆,只用于信息准确性和防篡改的校验,当然,MD5作为老牌的散列算法,很多经典的编码已经可以被反向解码出来(依靠正向的暴力穷举)以及被碰撞模仿(王小云院士团队的"破解"能够根据MD5编码后串码模拟原始消息,即使它可能与原信息不同),类似的还有SHA1,因此衍生了SHA224、SHA256、SHA512等更多安全的散列算法
扫盲——加密那些事2021-05-14鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}