扫盲——加密那些事
扫盲——加密那些事扫盲加密解密算法 日常开发中我们经常接触MD5算法,以此进行简单的文件完整性校验或者是后台密码验证,MD5是最常见也是最简单快捷的散列算法,常用于参数或文件完整性校验,譬如网络请求发起方与接收方分别对参数做MD5编码,一旦不一致便判断请求被篡改从而拒绝该请求,从而保证信息安全,编码后的字符串是编码前文本的一个简要梗概,因此它也被称作是信息摘要算法 这个算法的特点就是不可逆,只用于信息准确性和防篡改的校验,当然,MD5作为老牌的散列算法,很多经典的编码已经可以被反向解码出来(依靠正向的暴力穷举)以及被碰撞模仿(王小云院士团队的"破解"能够根据MD5编码后串码模拟原始消息,即使它可能与原信息不同),类似的还有SHA1,因此衍生了SHA224、SHA256、SHA512等更多安全的散列算法

2021-05-14鱼鱼
第一个Vue前端独立项目构建尝试(工程化)
第一个Vue前端独立项目构建尝试(工程化)开始我的第一个前端独立项目的构建 使用webPack、npm进行项目模块化构建 安装相关软件准备构建: VSCode npm(node) 查看版本 npm -v node -v 安装相关依赖(使用淘宝镜像): npm install -g cnpm --registry=http://registry.npm.taobao.org 安装vue-cli脚手架: npm install -g vue-cli 查看版本: vue --version 进入目录后新建vue工程: vue init webpack projectname 配置相关内容:

2019-05-04鱼鱼
Consul高级应用:多数据中心,模板与Client(Zuul)
Consul高级应用:多数据中心,模板与Client(Zuul)此文整理了Consul比较实用的高级功能:多数据中心,模板与维护模式 Consul提供了多数据中心联动的特性,目前看来多数据中心只是在查询阶段提现,各个数据中心的数据持久化和数据目录(k-v对)的更新不相干扰 也就是说,多数据中心的特性目前看来不能作为可用性的保障,当然 不排除可以手动热切换数据中心 最好判断是否使用多数据中心的情形是判断服务是否属于同一系统下,是否相同serviceId能提供相同的无状态服务,以下列举一些情景: 一个系统拥有多个域名的多套部署,提供版本一致的服务(建议使用多数据中心) 一个系统由多个服务器提供的不同服务提供(视服务具体情况,不建议使用多数据中心)

2020-01-28鱼鱼
代理与nginx
代理与nginx代理指接受请求但是不由代理服务器自己处理请求而是直接转发给指定服务器(或是根据负载均衡算法转发给集群部署中的某一台服务器),然后由代理服务器接收请求结果并返回给客户端 指客户端的代理处理方式,指用户通过代理服务器访问指定的网站、服务,最常见的应用是翻墙,并且使用这种方式可以使客户端匿名访问 指服务端的代理处理方式,多个用户在访问网站服务时,实际访问的是反向代理服务器(如nginx),反向代理服务器将请求内容转发给服务集群,最常用于服务器集群负载均衡和避免内网信息暴露 总之,正向代理是对服务端隐藏了客户端信息,反向代理则正相反,有一张图可以很好地概括这两个代理概念(图源知乎,侵删)

2019-05-11鱼鱼
ooo
ooo拆箱:包装类-》基本数据类型 Integer Byte -127- 127是以缓存数组指向相同对象,之外的默认new 模块化 完全解耦 #预编译 $直接用 $内容手动干涉 Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor SimpleExecutor:每执行一次update或select,就开启一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor:执行update或select,以sql作为key查找Statement对象,存在就使用,不存在就创建,用完后,不关闭Statement对象,而是放置于Map
内,供下一次使用
2019-04-02鱼鱼
分布式系统中的一致性算法和问题解决
分布式系统中的一致性算法和问题解决在撰写脑裂问题相关的博客时发现脑裂问题的产生原因在不同算法下的分布式系统各不相同,需要先大致了解一致性算法并针对性的解决 市面上有很多开源的分布式系统,他们的数据一致性算法不尽相同,例如k-v系统的祖师爷——zookeeper采用的是ZAB的算法,而最近流行的Consul是raft算法,不同数据中心server沟通的方式则是gossip协议 不同的协议和方式对选举和数据同步有不同的处理机制,利用这篇文章来对比常见的分布式一致性算法 一个系统可能会使用多个不同的一致性算法,以便于在不同的业务环节上有着各自更贴切的处理 ps:有种观点是一致性算法不是很准确,因为replica也能保证数据某种程度上具有一致性,有人称之为共识算法
2021-03-13鱼鱼
网络时延、异步IO、Pipeline
网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
2021-04-21鱼鱼
造轮子1 注解管理
造轮子1 注解管理使用public @interface xxx{}可以自定义一个注解,在注解上面定义的注解叫做元注解 以下代码取自开源API文档生成项目Swagger: 在注解中也可以使用注解,我们称这些注解为元注解,上面代码中使用了一些比较常见的元注解 @Target({ElementType.TYPE})用于定义注解的使用范围,常见的包含 TYPE:类、接口、枚举 FIELD:字段声明 METHOD:方法声明 PARAMTER:参数声明 CONSTRUACTOR:构造函数声明 LOCAL_VARIABLE:局部变量声明 ANNOTATION_TYPE:其他注解声明 PACKAGE:包声明(代码中的第一行 声明package的时候)
2019-05-25鱼鱼
过滤器、拦截器、监听器和AOP
过滤器、拦截器、监听器和AOP用这篇文章来梳理一下这些杂七杂八的Spring MVC中的基础概念,顺便讲一下在项目中的一些基本使用和常见应用(其实主要是针对AOP的),至于使用他们实现具体的功能,后续可能会独立写出来(谁知道呢) 执行的顺序: 项目初始化:filter:init()->filter:doFilter()->preHandle->Controller->postHandle->afterComplition ->destory() 过滤器(Filter),由servlet提供,拦截URL(其实是servlet),经过代理,执行想要的方法,最基本的使用是集成Filter类并重写方法,因为是从url层面上直接拦截,可以有很多用途,比如用于用户身份校验,比如某些页面需要有用户权限才能访问,就可以利用过滤器进行拦截,一些安全框架的鉴权本身也是过滤器的实现
2020-03-01鱼鱼
分布式系统一致性的分类
分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
2021-03-13鱼鱼
[Quick Start]RedisTemplate的bean手动配置
[Quick Start]RedisTemplate的bean手动配置 有时我们可能需要手动配置Redis的连接,例如动态修改或是从特殊的参数中获取,而不是使用SpringBoot的自有配置,此篇文章意在快速指引redis的手动配置 基于Spring项目和Jedis的底层,使用RedisTemplate; 通过Maven引入相关依赖,可以的话spring-data-redis选择2.0.0以上版本,较低版本需要的依赖: 如果使用了Spring-boot并且要使用较高的版本(例如在2.1.0后才有的某些API-putIfAbsent带有超时时间的版本),我们直接修改starter的版本是不够的,二者版本并不对称,我们需要去掉其中的redis依赖并单独引入 建议保持良好的依赖管理习惯,显式的移除依赖,而不是任其覆盖,如:
2020-02-24鱼鱼
算法1
算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高
2019-03-14Sherlock