扫盲——加密那些事
扫盲——加密那些事扫盲加密解密算法 日常开发中我们经常接触MD5算法,以此进行简单的文件完整性校验或者是后台密码验证,MD5是最常见也是最简单快捷的散列算法,常用于参数或文件完整性校验,譬如网络请求发起方与接收方分别对参数做MD5编码,一旦不一致便判断请求被篡改从而拒绝该请求,从而保证信息安全,编码后的字符串是编码前文本的一个简要梗概,因此它也被称作是信息摘要算法 这个算法的特点就是不可逆,只用于信息准确性和防篡改的校验,当然,MD5作为老牌的散列算法,很多经典的编码已经可以被反向解码出来(依靠正向的暴力穷举)以及被碰撞模仿(王小云院士团队的"破解"能够根据MD5编码后串码模拟原始消息,即使它可能与原信息不同),类似的还有SHA1,因此衍生了SHA224、SHA256、SHA512等更多安全的散列算法

2021-05-14鱼鱼
IO多路复用模型:select、poll、epoll对比
IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别

2020-08-11鱼鱼
第一个Vue前端独立项目构建尝试(工程化)
第一个Vue前端独立项目构建尝试(工程化)开始我的第一个前端独立项目的构建 使用webPack、npm进行项目模块化构建 安装相关软件准备构建: VSCode npm(node) 查看版本 npm -v node -v 安装相关依赖(使用淘宝镜像): npm install -g cnpm --registry=http://registry.npm.taobao.org 安装vue-cli脚手架: npm install -g vue-cli 查看版本: vue --version 进入目录后新建vue工程: vue init webpack projectname 配置相关内容:

2019-05-04鱼鱼
多线程应用提高(III) 并发编程的艺术
多线程应用提高(III) 并发编程的艺术《并发编程的艺术》p36:JMM不保证64位的long型和double型变量的写操作具有原子性 面试中可能经常会被问到HashMap和HashTable的区别,其中最重要的就是前者并不是线程安全的,但其实在高并发的情形下,后者的效率低的不像话甚至不可用,所以在jdk7之后出现了线程高效且安全的ConcurrentHashMap 当并发严重时,某线程若是调用了同步方法,另外的线程将进入阻塞/轮询状态,既不能put也不能get,但ConcurrentHashMap是不同的,它采用了锁的分段技术,将数据分段存储,不同的数据持有不同的锁,这样可用性会大大高于HashTable,所以在实际开发中我们都用ConcurrentHashMap取代HashTable
![多线程应用提高(III) 并发编程的艺术]()
2019-06-18鱼鱼
ES快速入门(I)——分析分词器
ES快速入门(I)——分析分词器本文旨在快速入门Elasticsearch的分词,包括分词分析器的创建和介绍对比等,请确保在阅读前已经搭建好完备的集群 文章基于es7.0+,与稍旧版本的主要区别是没有type 在讨论分词前,我们先看一下es整体创建倒排的分词过程: 我们常说的分词器指的其实是“分析器”analyzer,es将以上常用的逻辑封装起来成为analyzer,但是语义上的分词器是指上面的tokenizer 经过了三层处理后拿到了terms数组建立最终的倒排索引: character filter:一般不会用到这个filter,是在分词前对原有的文档字段内容做转换,例如去除html的标签提取出正文内容,按正则清除和替换某些内容,你可以指定及自定义0个到多个character filter,他们将共同存在,一个文本流在经过character filter处理后,依然是文本流;
![ES快速入门(I)——分析分词器]()
2020-09-01鱼鱼
盘点redis中特殊的数据类型 HyperLogLog Bitmap
盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
![盘点redis中特殊的数据类型 HyperLogLog Bitmap]()
2022-01-12鱼鱼
IO与NIO
IO与NIO我们都知道IO流传输,其实IO模型有很多,例如BIO、NIO、AIO等,传统的IO都是同步的 IO为各种流操作 IO操作分类 I IO操作分类 II 其中,输入流可以为InputStream和Reader,分别为字节流和字符流,对应地,输出流为OutputStream和Writer,具体的使用在此不详述 NIO是IO模型中后推出的新IO模型 NIO并不一定是多线程的,但是NIO是多管道的,利用缓冲作为中间介质进行数据传输,运用的其实是多路复用技术,它恰恰是通过减少线程数量从而减少上下文的频繁切换,提高性能 Channel:通道,相当于一个连接,不能直接输出数据,只能与Buffer交换数据

2019-05-11鱼鱼
算法:动态规划解法及例题
算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌

2020-03-11鱼鱼
tips
tips一些小tip: 向上转型,失去特征 定义相同对象,重写hash和(不是或)equal Vue.nextTick() 回调函数:在Vue(重新)渲染页面之后调用 vue绑定样式,我们会发现background-color 不能直接绑定 需写为backgroundColor 因为js中不允许出现‘-’ 存库之前,mysql会把换行符什么的过滤掉,使得出入不一致(应用场景:textarea存)解决:this.value.replace(/\n|\r\n/g,"
") linux下的mysql的表名是区分大小写的! 实现线程接口 Runnable 注解注入失败 注解注入失败 Linux下缺少部分字体,使用drawString会出问题(二维码模块),解决手段:从windows引入字体,因为不是什么主流问题所以就简单写一下,如果再碰到相关问题在详细的讲述一下
![tips]()
2019-05-08鱼鱼
DDD领域下的架构模式——CQRS架构
DDD领域下的架构模式——CQRS架构//TODO
![DDD领域下的架构模式——CQRS架构]()
2021-06-24鱼鱼
对多线程的执行效率探究——合理的任务并发拆分
对多线程的执行效率探究——合理的任务并发拆分通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间

2019-12-09鱼鱼
Redis原理-源码解析:数据结构2 list
Redis原理-源码解析:数据结构2 list所有原理实现基于Redis版本6.0.9 Redis中的list采用的是链表,在开始前,我们先看看list的最基本指令实现 t-list.c 由此可知,Redis的List底层数据结构都是基于quickList的 这是list所依赖的数据结构: quicklist.h 我们注意到其是由quicklistNode所构成的链表,而其中的数据实则为zl(ziplist)或是bookmark,在大多时候quicklistNode都使用ziplist存储数据 在上文中lpush执行了一个插入方法quicklistPush,在quicklist.c中有他的实现: quicklist真正存储数据的结构是ziplist,所以倒不如说,在Redis中,list是一个由ziplist节点构成的链表

2020-11-28鱼鱼