数据库的并发、锁机制与MVCC

数据库的并发、锁机制与MVCC在日常开发中,经常遇到数据库进行高并发操作的情况,但是我们处理并发一般都只在代码范畴而并不处理具体的数据库操作,这是因为数据库对基本的数据库操作做了锁处理,让我们可以忽略这一层的并发问题 详细可以参考Mysql的官方文档 注意:这一篇博客是针对MySQL数据库,且实用默认的 引擎InnoDb,使用其他数据库可能存在略微的差异 MySQL默认的数据库引擎InnoDB中Autocommit值为0(即自动提交事务)执行SQL语句的时候,每一条SQL语句都是一条单独的事务,所以并不存在并发的问题,数据库的锁机制已经做了很好的处理 但是当我们开启事务时,若不加处理,可能会产生一系列并发带来的问题
数据库的并发、锁机制与MVCC2021-01-24鱼鱼

基于Consul的服务注册与发现

基于Consul的服务注册与发现注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务
基于Consul的服务注册与发现2020-01-10鱼鱼

多线程应用提高(II) 线程池

多线程应用提高(II) 线程池项目中,当发生并行操作时,一般都会用到线程池处理多线程任务,线程池的规则类似于数据库连接池,在此不予赘述 jdk自带线程池,此处主要讲述Spring框架自带的线程池ThreadPoolTaskExecutor 通过实现Runnable和Callable接口实现一个线程任务,从而能放入Executor进行线程管理 其中,Callable可以理解为带有返回值的Runnable,并且Callable需要实现的方法不是run()而是call(),该方法返回一个泛型对象 当我们把一个需要返回值的线程任务放进线程池后,线程池会返回一个Future对象,借助该对象,我们可以调用get()方法获取线程的状态,调用get()会阻塞当前线程直到返回结果
多线程应用提高(II) 线程池2020-02-25鱼鱼

Redis高级特性:事务和pipelined以及在RedisTemplate中的应用

Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用2020-06-21鱼鱼

并发之AQS全解析

并发之AQS全解析我们知道juc(java.util.concurrent)包下有很多实用的类,提供了很多并发工具,例如线程池、原子类、并发工具、信号量工具、锁等,可以说基本实现都为悲观锁,底层原理基本都使用了AQS(AbstractQueuedSynchronizer),AQS不是一种概念,是并发中实打实的工具类 本篇文章针对AQS做解析 AQS是多线程访问共享资源的同步器框架 AQS的资源可以是独占的也可以是共享的 我们先来简单看一下它的使用方式和ApI(因为是抽象类,是不能直接使用的),下图是AQS的整体脉络 AQS核心就是一个状态值state,同时维护了一个线程的阻塞队列,队列的节点为有两种状态:SHARED(共享)和EXCLUSIVE(独占),节点状态有五种:
并发之AQS全解析2021-03-12鱼鱼

阿里巴巴Java开发手册 华山版 v1.5

阿里巴巴Java开发手册 华山版 v1.5《Java 开发手册》是阿里巴巴集团技术团队的集体智慧结晶和经验总结,经历了多次大规模一线实战的检验及不断完善,公开到业界后,众多社区开发者踊跃参与,共同打磨完善,系统化地整理成册 现代软件行业的高速发展对开发者的综合素质要求越来越高,因为不仅是编程知识点,其它维度的知识点也会影响到软件的最终交付质量 比如:数据库的表结构和索引设计缺陷可能带来软件上的架构缺陷或性能风险;工程结构混乱导致后续维护艰难;没有鉴权的漏洞代码易被黑客攻击等等 所以本手册以 Java 开发者为中心视角,划分为编程规约、异常日志、单元测试、安全规约、MySQL 数据库、工程结构、设计规约七个维度,再根据内容特征,细分成若干二级子目录
阿里巴巴Java开发手册 华山版 v1.52020-02-24鱼鱼

Mybatis的缓存机制、redis数据库缓存实现和相关问题

Mybatis的缓存机制、redis数据库缓存实现和相关问题高并发环境下,数据库要承受非常大的压力,我们不能奢求每一次都只依赖分布式结构的读写分离数据库来解决问题,所以引入了数据库缓存的概念,这里的缓存不是具体的memcache或是redis,可能只是一块内存区域 此文介绍Mybatis的缓存机制 SqlSession是Mybatis创建数据库链接的会话,当度使用Mybatis需要对SqlSesssion的生命周期有一个把控,但是在Spring的集成中这个会话会被自动创建,周期只是对应一个方法(例如Service层的一个方法),所以每个请求就会对应一个或是多个SqlSession,SQLSession的主要实现是其中的Exector,对应了三种策略:
Mybatis的缓存机制、redis数据库缓存实现和相关问题2020-03-03鱼鱼

算法:广度优先搜索(BFS)(最短路径)

算法:广度优先搜索(BFS)(最短路径)我们先看一个案例: 遍历一个树结构,按层次输出树的节点内容,即:欲求 A B C D E F 实现方式便是从根节点(A)向下遍历,先获取A,其次是A的子节点B和C,其次是B的子节点D…… 这种遍历树结构或者图结构的方法被称作广度优先搜索(BFS),与之对应的先遍历到最下层子节点的是深度优先 BFS核心采用队列的数据结构,例如上面的树结构中,解法为: A进队列->A出队列 B、C进队列->B出队列 D进队列 ->C出队列 E、F进队列-> D、E、F出队列 如果想要区分层次边缘,使用count参数即可 解法步骤(蓝色部分为已经处理完的节点):
算法:广度优先搜索(BFS)(最短路径)2020-06-05鱼鱼

Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听

Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听查看源码的顺序就见仁见智了,比较普遍的做法是从IoC入手,了解容器注入的每一个环节,掌握大致的流程 由于使用的是Spring,所以在这里我们引入比较古老的xml配置文件进行bean的配置,首先定义一个bean: 配置描述bean的xml,核心只有一行: 这样一来就可以使用BeanFactory这个容器来注入bean并使用了: 本来有封装好的XmlBeanFactory,这一类现在已经被弃用了,所以采用了他的父类DefaultListableBeanFactory;当然,也可以使用更加方便和常用的ApplicationContext: 当然从xml文件读取bean的配置只是其中一种目前用的不多的加载方式,还有基于包扫描等加载bean的方法,此处仅为理解IoC的基本使用
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听2020-08-04鱼鱼

网络协议面面观:TCP/IP协议组,TCP与UDP

网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:
网络协议面面观:TCP/IP协议组,TCP与UDP2020-03-03鱼鱼

多线程应用提高(III) 并发编程的艺术

多线程应用提高(III) 并发编程的艺术《并发编程的艺术》p36:JMM不保证64位的long型和double型变量的写操作具有原子性 面试中可能经常会被问到HashMap和HashTable的区别,其中最重要的就是前者并不是线程安全的,但其实在高并发的情形下,后者的效率低的不像话甚至不可用,所以在jdk7之后出现了线程高效且安全的ConcurrentHashMap 当并发严重时,某线程若是调用了同步方法,另外的线程将进入阻塞/轮询状态,既不能put也不能get,但ConcurrentHashMap是不同的,它采用了锁的分段技术,将数据分段存储,不同的数据持有不同的锁,这样可用性会大大高于HashTable,所以在实际开发中我们都用ConcurrentHashMap取代HashTable
多线程应用提高(III) 并发编程的艺术2019-06-18鱼鱼

ES快速入门(2)——Tokenizer、Reindex

ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
ES快速入门(2)——Tokenizer、Reindex2020-09-05鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}