Java中的协程(虚拟线程)探究
Java中的协程(虚拟线程)探究在Java最新的LTS版本 21中,终于实装了协程这一特性 当然,在这些诸如python、golang等轻量级语言中被称为协程的东西,在Java中有个全新的代号——虚拟线程,为了将协程与线程做区分,在Java21中,原Thread被称之为平台线程 下文中,将统一使用线程/协程的方式称呼 我们都知道,Java中引入了线程的概念,区别于系统中的进程 作为并发执行的最小单元,在一定的条件下,使用多个线程同时运作可以有效提高程序的运转效率 而线程这一能力源于系统本身而并非JVM 之所以说是在一定条件下,是因为受限于机器配置情况(CPU的运作机制、核心数),线程的同时运作并不能线性的提升运行性能,单个cpu并不能同时处理多线程任务,实际的运作方式是基于时间片分片,各个线程抢占式执行代码,这样能减少一些无效的io等待(例如网络io、磁盘io实际是会阻塞等待io结果),同时在多核心场景下也能有效利用cpu
![Java中的协程(虚拟线程)探究]()
2024-10-28鱼鱼
算法:Trie(前缀树、字典树)
算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符

2021-01-19鱼鱼
关于多数据源的那些事儿(萌新向)
关于多数据源的那些事儿(萌新向)在日常的JAVA后端开发中多数据源的应用场景并不少见,但对于刚刚接触springboot或是刚刚接触工程化开发的萌新来说却仿佛是一座不可逾越的高山,因为新手常常会局限于某些“固定的”项目配置,不知道如何配置?从哪里开始配置?以及什么能改什么不能改 这种现象在用惯了springboot便捷开发的老手中也很常见,众所周知,相比于spring的springboot简化了很多工程前置配置,虽然增加了工作效率却也使得开发人员失去了了解基础配置的机会 综上,本文主要讲解如何在springboot环境中,以一种最简单的、即起即用的、不依赖中间件和数据库切片的方式配置单一项目的多数据源 限于笔者能力有限,经验尚浅,若有描述不当之处,敬请批评指正

2019-06-28Agostino
网络协议面面观:TCP/IP协议组,TCP与UDP
网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:

2020-03-03鱼鱼
算法:动态规划解法及例题
算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌

2020-03-11鱼鱼
动态路由数据源(多租户)解决方案
动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)

2021-01-07鱼鱼
Linux常见指令集和使用技巧(持续更新)
Linux常见指令集和使用技巧(持续更新)目前是一步一步记录用到了的Linux指令 | 管道,将符号前的指令输出作为符号后的指令输入 > 将正常输出重定向(比如指令打印内容输出到文件) >> 将正常输出追加重定向(区别与上面的覆盖,这个指令对于已经存在的文件会追加内容) & 后台执行 && 前面的指令执行完毕才执行后面的指令 || 前面的指令执行出错才执行后面的指令 ls 显示目录下的文件目录或者列出文件信息 ll 属于ls,列出目录下的所有文件信息 cd 进入目录 pwd 显示当前目录的绝对路径 mkdir 创建目录 rm 删除目录(慎) mv 移动目录 即文件的打包安装,对于不同的Linux系统使用的工具有所不同,此处使用ubuntu系统,利用apt工具进行打包

2019-09-09鱼鱼
分布式系统中的CAP原则与BASE原则
分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性

2019-09-29鱼鱼
Redis原理-源码解析:数据结构2 list
Redis原理-源码解析:数据结构2 list所有原理实现基于Redis版本6.0.9 Redis中的list采用的是链表,在开始前,我们先看看list的最基本指令实现 t-list.c 由此可知,Redis的List底层数据结构都是基于quickList的 这是list所依赖的数据结构: quicklist.h 我们注意到其是由quicklistNode所构成的链表,而其中的数据实则为zl(ziplist)或是bookmark,在大多时候quicklistNode都使用ziplist存储数据 在上文中lpush执行了一个插入方法quicklistPush,在quicklist.c中有他的实现: quicklist真正存储数据的结构是ziplist,所以倒不如说,在Redis中,list是一个由ziplist节点构成的链表

2020-11-28鱼鱼
空
空1
![空]()
2025-09-05鱼鱼
JVM的垃圾回收
JVM的垃圾回收此文介绍Java的基本垃圾回收机制 GC主要回收的是堆区,在堆中是有对象分代的,一个对象每“逃”过一次回收,对象代数便+1,新生对象被称作新生代(如果是占据内存较大的对象直接定义为老年代),当代数一定时对象将由新生代变为老年代 同时在Java1.7之前还有永久代,保存了一些静态变量 总之,内存回收只发生在新生代和老年代之间 除了分代,内存也有分区: 如图,是内存区域分配,其中Eden存储了新建的小对象,当回收时,将Eden中存活的对象转移到To Survivor区中,将From Survivor中的代数高(一般是15)的存活对象转移到老年代中,代数没达到阈值的存活对象转移到To Survivor中

2021-04-07鱼鱼
kasper的算法(从0到1)
kasper的算法(从0到1)https://javaguide.cn/cs-basics/data-structure/linear-data-structure.html https://javaguide.cn/cs-basics/algorithms/linkedlist-algorithm-problems.html 项目地址:https://github.com/labuladong/fucking-algorithm 在线文档地址:https://labuladong.gitee.io/algo/home/ http://fishmaple.cn/blog/topicBlog?topicId=7
![kasper的算法(从0到1)]()
2023-10-23kasper