分布式系统中的一致性算法和问题解决
分布式系统中的一致性算法和问题解决在撰写脑裂问题相关的博客时发现脑裂问题的产生原因在不同算法下的分布式系统各不相同,需要先大致了解一致性算法并针对性的解决 市面上有很多开源的分布式系统,他们的数据一致性算法不尽相同,例如k-v系统的祖师爷——zookeeper采用的是ZAB的算法,而最近流行的Consul是raft算法,不同数据中心server沟通的方式则是gossip协议 不同的协议和方式对选举和数据同步有不同的处理机制,利用这篇文章来对比常见的分布式一致性算法 一个系统可能会使用多个不同的一致性算法,以便于在不同的业务环节上有着各自更贴切的处理 ps:有种观点是一致性算法不是很准确,因为replica也能保证数据某种程度上具有一致性,有人称之为共识算法

2021-03-13鱼鱼
JVM的垃圾回收
JVM的垃圾回收此文介绍Java的基本垃圾回收机制 GC主要回收的是堆区,在堆中是有对象分代的,一个对象每“逃”过一次回收,对象代数便+1,新生对象被称作新生代(如果是占据内存较大的对象直接定义为老年代),当代数一定时对象将由新生代变为老年代 同时在Java1.7之前还有永久代,保存了一些静态变量 总之,内存回收只发生在新生代和老年代之间 除了分代,内存也有分区: 如图,是内存区域分配,其中Eden存储了新建的小对象,当回收时,将Eden中存活的对象转移到To Survivor区中,将From Survivor中的代数高(一般是15)的存活对象转移到老年代中,代数没达到阈值的存活对象转移到To Survivor中

2021-04-07鱼鱼
空
空1
![空]()
2025-09-05鱼鱼
安全框架的使用:Shiro
安全框架的使用:ShiroShiro与Sping Security均是java的安全框架,主要用于处理用户身份验证和授权 常见场景为用户系统登录 Shiro易用性强,提供了认证,授权,加密,和会话管理功能 Shiro的三大核心组件 : Subject:即当前用户概念,不止代表着某用户,也可以是进程或任何可能的事物 SecurityManager:即所有Subject的管理者,可以把他看做是一个Shiro框架的全局管理组件,用于调度各种Shiro框架的服务 作用类似于SpringMVC中的DispatcherServlet,用于拦截所有请求并进行处理 Realm:Realm是用户的信息认证器和用户的权限认证器,我们需要自己来实现Realm来自定义的管理我们自己系统内部的权限规则

2019-09-29鱼鱼
项目异常问题解决
项目异常问题解决这天 程序抛出了一个WARN日志: createSecureRandom Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [43,844] milliseconds. 这意味着SHA1PRNG算法导致项目启动多花费了43秒,这是基于SHA-1算法实现且保密性较强的伪随机数生成器 1.从tomcat层面上解决: 在catalina.sh中加入这么一行:-Djava.security.egd=file:/dev/./urandom 2.从java层面解决 打开$JAVA_PATH/jre/lib/security/java.security这个文件,将下面的内容:

2019-02-28鱼鱼
ooo
ooo拆箱:包装类-》基本数据类型 Integer Byte -127- 127是以缓存数组指向相同对象,之外的默认new 模块化 完全解耦 #预编译 $直接用 $内容手动干涉 Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor SimpleExecutor:每执行一次update或select,就开启一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor:执行update或select,以sql作为key查找Statement对象,存在就使用,不存在就创建,用完后,不关闭Statement对象,而是放置于Map
内,供下一次使用
2019-04-02鱼鱼
MySQL tips
MySQL tips一些日常接触到的MySQL优化tips,比较散乱 假设有一个用户表,对于一句很简单的查询语句: 假设name与age字段均有单列索引,容易想到的是,MySQL应该会分别走两次索引,并将其结合起来,EXPLAIN也是如此,大多数时候MySQL会进行优化,我们可能会看到EXPLAIN的结果中有Using union或Using soft union,这是MySQL针对OR做了隐性的优化,但当SQL复杂或数据极端情况下,这一语句极容易变成全表扫描,偶尔使用联合索引可能解决问题,更多情况则是MySQL“昏了头”,即使OR条件均涉及数据条数不多,依旧没能在查询语句中使用索引,此时应调整为UNION语句(可以权衡一下重复及顺序是否有影响,可以使用更快的UNION ALL):
2021-01-13鱼鱼
分布式系统中的CAP原则与BASE原则
分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性
2019-09-29鱼鱼
JVM与GC
JVM与GCJMM,长下面这个样子: 其中,堆和栈区自然不做介绍了,主要介绍: 程序计数器:线程私有的,记录正在执行的字节码地址,换言之,它告诉我们某线程执行到了那里,分支、循环等也会依赖这个来执行,这一区域不会发生OOM问题 栈:就是正常所指的栈,每个方法被执行的时候都会同时创建一个栈帧(Stack Frame )用于存储局部变量表、操作栈、动态链接、方法出口等信息 每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程,这一区域会发生StackOverflow问题 堆:就是正常所指的堆,这里是GC的主要区域 方法区:线程私有的,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,运行时常量池也包含在里面
2019-03-28鱼鱼
IO与NIO
IO与NIO我们都知道IO流传输,其实IO模型有很多,例如BIO、NIO、AIO等,传统的IO都是同步的 IO为各种流操作 IO操作分类 I IO操作分类 II 其中,输入流可以为InputStream和Reader,分别为字节流和字符流,对应地,输出流为OutputStream和Writer,具体的使用在此不详述 NIO是IO模型中后推出的新IO模型 NIO并不一定是多线程的,但是NIO是多管道的,利用缓冲作为中间介质进行数据传输,运用的其实是多路复用技术,它恰恰是通过减少线程数量从而减少上下文的频繁切换,提高性能 Channel:通道,相当于一个连接,不能直接输出数据,只能与Buffer交换数据
2019-05-11鱼鱼
扫盲——加密那些事
扫盲——加密那些事扫盲加密解密算法 日常开发中我们经常接触MD5算法,以此进行简单的文件完整性校验或者是后台密码验证,MD5是最常见也是最简单快捷的散列算法,常用于参数或文件完整性校验,譬如网络请求发起方与接收方分别对参数做MD5编码,一旦不一致便判断请求被篡改从而拒绝该请求,从而保证信息安全,编码后的字符串是编码前文本的一个简要梗概,因此它也被称作是信息摘要算法 这个算法的特点就是不可逆,只用于信息准确性和防篡改的校验,当然,MD5作为老牌的散列算法,很多经典的编码已经可以被反向解码出来(依靠正向的暴力穷举)以及被碰撞模仿(王小云院士团队的"破解"能够根据MD5编码后串码模拟原始消息,即使它可能与原信息不同),类似的还有SHA1,因此衍生了SHA224、SHA256、SHA512等更多安全的散列算法
2021-05-14鱼鱼
分布式系统一致性的分类
分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
2021-03-13鱼鱼