算法1

算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高
算法12019-03-14Sherlock

造轮子1 注解管理

造轮子1 注解管理使用public @interface xxx{}可以自定义一个注解,在注解上面定义的注解叫做元注解 以下代码取自开源API文档生成项目Swagger: 在注解中也可以使用注解,我们称这些注解为元注解,上面代码中使用了一些比较常见的元注解 @Target({ElementType.TYPE})用于定义注解的使用范围,常见的包含 TYPE:类、接口、枚举 FIELD:字段声明 METHOD:方法声明 PARAMTER:参数声明 CONSTRUACTOR:构造函数声明 LOCAL_VARIABLE:局部变量声明 ANNOTATION_TYPE:其他注解声明 PACKAGE:包声明(代码中的第一行 声明package的时候)
造轮子1 注解管理2019-05-25鱼鱼

数据库的并发、锁机制与MVCC

数据库的并发、锁机制与MVCC在日常开发中,经常遇到数据库进行高并发操作的情况,但是我们处理并发一般都只在代码范畴而并不处理具体的数据库操作,这是因为数据库对基本的数据库操作做了锁处理,让我们可以忽略这一层的并发问题 详细可以参考Mysql的官方文档 注意:这一篇博客是针对MySQL数据库,且实用默认的 引擎InnoDb,使用其他数据库可能存在略微的差异 MySQL默认的数据库引擎InnoDB中Autocommit值为0(即自动提交事务)执行SQL语句的时候,每一条SQL语句都是一条单独的事务,所以并不存在并发的问题,数据库的锁机制已经做了很好的处理 但是当我们开启事务时,若不加处理,可能会产生一系列并发带来的问题
数据库的并发、锁机制与MVCC2021-01-24鱼鱼

[Quick Start]RedisTemplate的bean手动配置

[Quick Start]RedisTemplate的bean手动配置 有时我们可能需要手动配置Redis的连接,例如动态修改或是从特殊的参数中获取,而不是使用SpringBoot的自有配置,此篇文章意在快速指引redis的手动配置 基于Spring项目和Jedis的底层,使用RedisTemplate; 通过Maven引入相关依赖,可以的话spring-data-redis选择2.0.0以上版本,较低版本需要的依赖: 如果使用了Spring-boot并且要使用较高的版本(例如在2.1.0后才有的某些API-putIfAbsent带有超时时间的版本),我们直接修改starter的版本是不够的,二者版本并不对称,我们需要去掉其中的redis依赖并单独引入 建议保持良好的依赖管理习惯,显式的移除依赖,而不是任其覆盖,如:
[Quick Start]RedisTemplate的bean手动配置 2020-02-24鱼鱼

盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼

Java中的动态代理与静态代理

Java中的动态代理与静态代理proxy(代理)作为一种设计模式在Java中已经应用非常广泛,例如常见的拦截器是代理模式设计的,AOP是通过动态代理实现的,而基于AOP的应用就更多了,从简单的事务应用到Dubbo框架,Java开发中离不开代理,本篇文章主要阐述Java中的代理,此处是比较狭义的代理,仅指方法和类中的代理 代理模式是一种非常常见的设计模式,它通过给某对象提供代理,从而通过代理对象控制原对象的引用 以下是代理模式的简单实现: 类Admin: 对应的代理类AdminProxy: 设计良好的聚合代理模式应该是代理类与被代理类共同继承一个接口,此处只为实现功能 这样在执行new AdminProxy().changeWorld()时,除了会调用原本的new Admin().changeWorld(),在方法前后也可以做出些其他的操作
Java中的动态代理与静态代理2019-08-09鱼鱼

使用RPC与Restful接口调用服务

使用RPC与Restful接口调用服务在SOA和微服务架构中,远程通信是无法避免的,最常用的远程通信有两种方式: restful的接口,使用Http通信 使用dubbo或是Spring Cloud组件进行 RPC协议远程调用,可选地使用socket通信 不同的人对 RPC调用会有不同的看法,甚至对rpc本身的理解都不甚相同,但我认为 RPC有两种倾向: 一为语义化的 RPC 没有统一的请求规范,数据格式在开发人员中很难达成一致,在使用传统Http调用时,交互的双方需要约定一份“API文档”以保证数据格式的唯一性,这样API格式本身就成为了一道大墙,耽误研发双方的时间 但如果服务间采用语义化 RPC进行交互,双方可能并不需要一份文档,只要一份约定好的代码,并以此作为双方的依赖,在请求时也仅仅是直接调用方法本身,如此强的语义性怎能让人不爱
使用RPC与Restful接口调用服务2021-01-13鱼鱼

对多线程的执行效率探究——合理的任务并发拆分

对多线程的执行效率探究——合理的任务并发拆分通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间
对多线程的执行效率探究——合理的任务并发拆分2019-12-09鱼鱼

Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证

Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证2020-11-16鱼鱼

Elasticsearch 入门

Elasticsearch 入门(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度
Elasticsearch 入门2020-03-06鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

Netty

NettyNIO相比IO有诸多利处,但平常开发中若是直接使用原生NIO进行业务开发是很不可取的,否则将面临臃肿而晦涩难懂的代码 所以日常开发中我们会时常使用封装了NIO操作代码的Netty来实现NIO操作 Netty是一个异步事件驱动的网络应用框架,用于快速开发可维护的高性能服务器和客户端
Netty2019-05-11鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}