MySQL的数据锁 加在哪?
MySQL的数据锁 加在哪?此篇文章探讨MySQL数据库的锁,讨论MySQL各种语句将如何加锁,以及加锁的“效果”,主要针对默认的InnoDb引擎 基于MySQL5.6之后的版本 有心力的可以直接看MySQL官方文档,说的更为详细:14.7.3由InnoDB中的不同SQL语句设置的锁 按类型分,MySQL有锁: 行锁,最普通的锁,其实是加在索引上的锁 表锁,直接加在整张表的锁,一旦上锁整张表的操作都会比较锁 间隙锁,又称GAP锁,用于在涉及范围查询时给莫须有的位置加锁,防止并发插入等操作出现数据不一致(诸如幻读)的问题 间隙锁之间是不会冲突的 行锁与Gap锁合称Next-Key锁 间隙锁只能锁住间隙,即间隙锁不能指定具体的数据范围,将会锁上整个间隙

2021-02-05鱼鱼
用Quartz 写定时任务
用Quartz 写定时任务Quartz是OpenSymphony开源组织在Job scheduling领域的一个开源项目,是一款清新友好的任务调度框架 Quartz两大基本功能是job和SimpleTrigger(作业和触发器) 核心的是Scheduler类 有以下几个相关类: Scheduler:定时任务调度; Job:任务类需要实现的接口; JobDetail:Job的实例,被Scheduler执行的是JobDetail,而不是Job; Trigger:触发Job的执行; JobBuilder:定义和创建JobDetail实例的接口; TriggerBuilder:定义和创建Trigger实例的接口;

2019-06-18鱼鱼
ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配

2020-11-16鱼鱼
mysql前缀索引
mysql前缀索引有时候需要索引很长的字符列,这会让索引变得大且慢 通常可以索引开始的部分字符,这样可以大大节约索引空间,从而提高索引效率 但这样也会降低索引的选择性 前面已经说过,使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本 2.1因为前缀索引无法完全等于判断,只是前缀匹配,所以可能需要扫描的所以数会增加 2.2在特殊的查询里面 select id,email from SUser where email='zhangssxyz@xxx.com'; 前缀索引需要回到 id 索引再查一下,因为系统并不确定前缀索引的定义是否截断了完整信息 select count(distinct left(email,4))as L4,

2020-05-15yangwcn
第一个Vue前端独立项目构建尝试(工程化)
第一个Vue前端独立项目构建尝试(工程化)开始我的第一个前端独立项目的构建 使用webPack、npm进行项目模块化构建 安装相关软件准备构建: VSCode npm(node) 查看版本 npm -v node -v 安装相关依赖(使用淘宝镜像): npm install -g cnpm --registry=http://registry.npm.taobao.org 安装vue-cli脚手架: npm install -g vue-cli 查看版本: vue --version 进入目录后新建vue工程: vue init webpack projectname 配置相关内容:

2019-05-04鱼鱼
[Quick Start]RedisTemplate的bean手动配置
[Quick Start]RedisTemplate的bean手动配置 有时我们可能需要手动配置Redis的连接,例如动态修改或是从特殊的参数中获取,而不是使用SpringBoot的自有配置,此篇文章意在快速指引redis的手动配置 基于Spring项目和Jedis的底层,使用RedisTemplate; 通过Maven引入相关依赖,可以的话spring-data-redis选择2.0.0以上版本,较低版本需要的依赖: 如果使用了Spring-boot并且要使用较高的版本(例如在2.1.0后才有的某些API-putIfAbsent带有超时时间的版本),我们直接修改starter的版本是不够的,二者版本并不对称,我们需要去掉其中的redis依赖并单独引入 建议保持良好的依赖管理习惯,显式的移除依赖,而不是任其覆盖,如:
![[Quick Start]RedisTemplate的bean手动配置](/blog_cover/20200220/bc7458d39b07471f8559d5469418133f.png)
2020-02-24鱼鱼
盘点redis中特殊的数据类型 HyperLogLog Bitmap
盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
![盘点redis中特殊的数据类型 HyperLogLog Bitmap]()
2022-01-12鱼鱼
JVM与GC
JVM与GCJMM,长下面这个样子: 其中,堆和栈区自然不做介绍了,主要介绍: 程序计数器:线程私有的,记录正在执行的字节码地址,换言之,它告诉我们某线程执行到了那里,分支、循环等也会依赖这个来执行,这一区域不会发生OOM问题 栈:就是正常所指的栈,每个方法被执行的时候都会同时创建一个栈帧(Stack Frame )用于存储局部变量表、操作栈、动态链接、方法出口等信息 每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程,这一区域会发生StackOverflow问题 堆:就是正常所指的堆,这里是GC的主要区域 方法区:线程私有的,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,运行时常量池也包含在里面

2019-03-28鱼鱼
数据库的瓶颈问题解决(主从分离)与多数据源切换
数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失

2019-08-29鱼鱼
MYSQL的索引、引擎的实现原理和应用
MYSQL的索引、引擎的实现原理和应用本篇主要介绍数据库MySQL的索引实现原理,包括B+ Tree的原理,顺带提到了数据库的常用引擎 我们常见的数据库引擎就是InnoDB,还有另外一个常见一个引擎叫做MyISAM,这里着重介绍着两个引擎,执行show engines,可见MySQL所有的引擎如下: InnoDB采用行级锁,不会记录表中的数据个数,支持外键,高并发下使用事务的首选引擎,也是5.5之后MySQL的默认引擎(之前采用MyISAM),可以通过bin-log日志回滚数据,所以它比较适合处理数据量大的数据 PS:InnoDB最初不支持全文索引,在MySQL 5.6版本后添加了支持 MyISAM跟InnoDB截然相反,它采用表锁,记录了表的条目数,SELECT COUNT可以直接查看表中数据个数,支持FULLTEXT索引,不支持外键和事务,不能进行数据恢复操作,他比较适合频繁插入的数据,或是读操作远大于写操作时

2019-09-15鱼鱼
Servlet线程模型与异步请求
Servlet线程模型与异步请求本篇文章主要意在整理Servlet的线程模型,帮助大家更好的理解请求在广泛使用的web容器下(基于Servlet的Tomcat服务器)的运行原理 Servlet是Java的服务端框架,可以利用Servlet来编写一个动态服务器(动态主要是区别于单纯的html构建的静态页面),主要基于Http协议 通过Servlet提供的API,我们可以轻松的处理网络请求和与其他服务建立连接(相比于基于Socket编程),并且基于Java使得它具有跨平台性、灵活性 简单的说Servlet就是一个封装了操作网络请求的API,它将Http网络请求简化为更容易处理的对象 从某种意义上讲,当我们不适用任何web框架(例如Spring mvc和Struts2)时,我们编写的每一个页面(jsp或是继承于HttpServlet的类)也都可以说是一个Servlet
![Servlet线程模型与异步请求]()
2020-03-23鱼鱼