项目异常问题解决

项目异常问题解决这天 程序抛出了一个WARN日志: createSecureRandom Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [43,844] milliseconds. 这意味着SHA1PRNG算法导致项目启动多花费了43秒,这是基于SHA-1算法实现且保密性较强的伪随机数生成器 1.从tomcat层面上解决: 在catalina.sh中加入这么一行:-Djava.security.egd=file:/dev/./urandom 2.从java层面解决 打开$JAVA_PATH/jre/lib/security/java.security这个文件,将下面的内容:
项目异常问题解决2019-02-28鱼鱼

kasper的算法(从0到1)

kasper的算法(从0到1)https://javaguide.cn/cs-basics/data-structure/linear-data-structure.html https://javaguide.cn/cs-basics/algorithms/linkedlist-algorithm-problems.html 项目地址:https://github.com/labuladong/fucking-algorithm 在线文档地址:https://labuladong.gitee.io/algo/home/ http://fishmaple.cn/blog/topicBlog?topicId=7
kasper的算法(从0到1)2023-10-23kasper

Mybatis的缓存机制、redis数据库缓存实现和相关问题

Mybatis的缓存机制、redis数据库缓存实现和相关问题高并发环境下,数据库要承受非常大的压力,我们不能奢求每一次都只依赖分布式结构的读写分离数据库来解决问题,所以引入了数据库缓存的概念,这里的缓存不是具体的memcache或是redis,可能只是一块内存区域 此文介绍Mybatis的缓存机制 SqlSession是Mybatis创建数据库链接的会话,当度使用Mybatis需要对SqlSesssion的生命周期有一个把控,但是在Spring的集成中这个会话会被自动创建,周期只是对应一个方法(例如Service层的一个方法),所以每个请求就会对应一个或是多个SqlSession,SQLSession的主要实现是其中的Exector,对应了三种策略:
Mybatis的缓存机制、redis数据库缓存实现和相关问题2020-03-03鱼鱼

分布式系统中的CAP原则与BASE原则

分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性
分布式系统中的CAP原则与BASE原则2019-09-29鱼鱼

算法1

算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高
算法12019-03-14Sherlock

造轮子2 灵活运用反射

造轮子2 灵活运用反射//TODO
造轮子2 灵活运用反射2019-05-25鱼鱼

动态路由数据源(多租户)解决方案

动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)
动态路由数据源(多租户)解决方案2021-01-07鱼鱼

Java的SPI机制

Java的SPI机制SPI(Service Provider Interface) 是JDK内部提供的一种用于服务能力扩展的机制 在服务中通过不同的下沉方法实现能够加载不同的接口实现类,从而实现功能的热插拔 相比一些类似的设计模式(例如策略模式), SPI作为Java自带的实现特性,相对更加灵活和开放 我们常见的JDBC、日志框架slf4j、JavaMail、Spring等组件都基于 SPI实现(例如JDBC针对不同数据源的驱动) 之所以说区别于Java的一些设计模式,因为Java有一些实现能实现 SPI的动态加载 首先让我们定义 SPI对外提供抽象能力的接口类,这里为了便于理解展示包路径:
Java的SPI机制2024-10-14鱼鱼

多线程应用提高(II) 线程池

多线程应用提高(II) 线程池项目中,当发生并行操作时,一般都会用到线程池处理多线程任务,线程池的规则类似于数据库连接池,在此不予赘述 jdk自带线程池,此处主要讲述Spring框架自带的线程池ThreadPoolTaskExecutor 通过实现Runnable和Callable接口实现一个线程任务,从而能放入Executor进行线程管理 其中,Callable可以理解为带有返回值的Runnable,并且Callable需要实现的方法不是run()而是call(),该方法返回一个泛型对象 当我们把一个需要返回值的线程任务放进线程池后,线程池会返回一个Future对象,借助该对象,我们可以调用get()方法获取线程的状态,调用get()会阻塞当前线程直到返回结果
多线程应用提高(II) 线程池2020-02-25鱼鱼

使用RPC与Restful接口调用服务

使用RPC与Restful接口调用服务在SOA和微服务架构中,远程通信是无法避免的,最常用的远程通信有两种方式: restful的接口,使用Http通信 使用dubbo或是Spring Cloud组件进行 RPC协议远程调用,可选地使用socket通信 不同的人对 RPC调用会有不同的看法,甚至对rpc本身的理解都不甚相同,但我认为 RPC有两种倾向: 一为语义化的 RPC 没有统一的请求规范,数据格式在开发人员中很难达成一致,在使用传统Http调用时,交互的双方需要约定一份“API文档”以保证数据格式的唯一性,这样API格式本身就成为了一道大墙,耽误研发双方的时间 但如果服务间采用语义化 RPC进行交互,双方可能并不需要一份文档,只要一份约定好的代码,并以此作为双方的依赖,在请求时也仅仅是直接调用方法本身,如此强的语义性怎能让人不爱
使用RPC与Restful接口调用服务2021-01-13鱼鱼

Java中的协程(虚拟线程)探究

Java中的协程(虚拟线程)探究在Java最新的LTS版本 21中,终于实装了协程这一特性 当然,在这些诸如python、golang等轻量级语言中被称为协程的东西,在Java中有个全新的代号——虚拟线程,为了将协程与线程做区分,在Java21中,原Thread被称之为平台线程 下文中,将统一使用线程/协程的方式称呼 我们都知道,Java中引入了线程的概念,区别于系统中的进程 作为并发执行的最小单元,在一定的条件下,使用多个线程同时运作可以有效提高程序的运转效率 而线程这一能力源于系统本身而并非JVM 之所以说是在一定条件下,是因为受限于机器配置情况(CPU的运作机制、核心数),线程的同时运作并不能线性的提升运行性能,单个cpu并不能同时处理多线程任务,实际的运作方式是基于时间片分片,各个线程抢占式执行代码,这样能减少一些无效的io等待(例如网络io、磁盘io实际是会阻塞等待io结果),同时在多核心场景下也能有效利用cpu
Java中的协程(虚拟线程)探究2024-10-28鱼鱼

算法:Trie(前缀树、字典树)

算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符
算法:Trie(前缀树、字典树)2021-01-19鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}