ooo

ooo拆箱:包装类-》基本数据类型 Integer Byte -127- 127是以缓存数组指向相同对象,之外的默认new 模块化 完全解耦 #预编译 $直接用 $内容手动干涉 Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor SimpleExecutor:每执行一次update或select,就开启一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor:执行update或select,以sql作为key查找Statement对象,存在就使用,不存在就创建,用完后,不关闭Statement对象,而是放置于Map内,供下一次使用
ooo2019-04-02鱼鱼

过滤器、拦截器、监听器和AOP

过滤器、拦截器、监听器和AOP用这篇文章来梳理一下这些杂七杂八的Spring MVC中的基础概念,顺便讲一下在项目中的一些基本使用和常见应用(其实主要是针对AOP的),至于使用他们实现具体的功能,后续可能会独立写出来(谁知道呢) 执行的顺序: 项目初始化:filter:init()->filter:doFilter()->preHandle->Controller->postHandle->afterComplition ->destory() 过滤器(Filter),由servlet提供,拦截URL(其实是servlet),经过代理,执行想要的方法,最基本的使用是集成Filter类并重写方法,因为是从url层面上直接拦截,可以有很多用途,比如用于用户身份校验,比如某些页面需要有用户权限才能访问,就可以利用过滤器进行拦截,一些安全框架的鉴权本身也是过滤器的实现
过滤器、拦截器、监听器和AOP2020-03-01鱼鱼

数据库的存储过程、触发器和一些语法

数据库的存储过程、触发器和一些语法本篇文章讲述基于MySQL的存储过程触发器和一些相关的语法 在数据库中,存储过程是指将复用度很高并且不需要通过程序进行预编译的的SQL语句预先写好存放起来(此处所指的为用户定义在数据库中的存储过程),在需要时直接通过call调用 先看一个例子(注意,这不是创建存储过程的语句): 其中使用了日期相关的函数,DATE_SUB(CURDATE(),INTERCAL 10 DAY)代表当前时间前推十天 这个存储过程作用是查出十天前的数据然后将其删除 MySQL默认的分隔符是" ; ",这样一来定义存储过程就会因为 ; 被打断,所以在定义存储过程前后需要修改分隔符,使用DELIMITER关键字跟随分隔符,实际创建存储过程语句为:
数据库的存储过程、触发器和一些语法2019-06-12鱼鱼

第一个Vue前端独立项目构建尝试(工程化)

第一个Vue前端独立项目构建尝试(工程化)开始我的第一个前端独立项目的构建 使用webPack、npm进行项目模块化构建 安装相关软件准备构建: VSCode npm(node) 查看版本 npm -v node -v 安装相关依赖(使用淘宝镜像): npm install -g cnpm --registry=http://registry.npm.taobao.org 安装vue-cli脚手架: npm install -g vue-cli 查看版本: vue --version 进入目录后新建vue工程: vue init webpack projectname 配置相关内容:
第一个Vue前端独立项目构建尝试(工程化)2019-05-04鱼鱼

Redis原理-源码解析:数据结构3 hash

Redis原理-源码解析:数据结构3 hash 所有原理实现基于Redis版本6.0.9 hash在Redis中可以认为是套了一层的string,当然,对hash来说没有数字类型 让我们依旧通过基本命令看看hash的基本数据结构实现 在set方法中我们看到了hash的初始创建过程,一个hash最开始是zipist 想要了解ziplist可以看Redis原理-源码解析:数据结构2 list ,是为节省内存而生的链表格式 所以其实在使用ziplist时其查询的时间复杂度不是遵循hash的近似O(1),而是O(n),但是在数据量不大时,这种性能的损失微乎其微,并且能预见到大多数使用hash的场景都不会存储过多的字段 所以优先使用了更节省内存空间的ziplist
Redis原理-源码解析:数据结构3 hash 2020-11-29鱼鱼

ELK实战(Ⅰ) 基于ELK整合分布式业务日志

ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;
ELK实战(Ⅰ) 基于ELK整合分布式业务日志2020-03-14鱼鱼

网络时延、异步IO、Pipeline

网络时延、异步IO、Pipeline通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
网络时延、异步IO、Pipeline2021-04-21鱼鱼

数据库的瓶颈问题解决(主从分离)与多数据源切换

数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失
数据库的瓶颈问题解决(主从分离)与多数据源切换2019-08-29鱼鱼

Linux常见指令集和使用技巧(持续更新)

Linux常见指令集和使用技巧(持续更新)目前是一步一步记录用到了的Linux指令 | 管道,将符号前的指令输出作为符号后的指令输入 > 将正常输出重定向(比如指令打印内容输出到文件) >> 将正常输出追加重定向(区别与上面的覆盖,这个指令对于已经存在的文件会追加内容) & 后台执行 && 前面的指令执行完毕才执行后面的指令 || 前面的指令执行出错才执行后面的指令 ls 显示目录下的文件目录或者列出文件信息 ll 属于ls,列出目录下的所有文件信息 cd 进入目录 pwd 显示当前目录的绝对路径 mkdir 创建目录 rm 删除目录(慎) mv 移动目录 即文件的打包安装,对于不同的Linux系统使用的工具有所不同,此处使用ubuntu系统,利用apt工具进行打包
Linux常见指令集和使用技巧(持续更新)2019-09-09鱼鱼

常见树形结构

常见树形结构树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子
常见树形结构2019-03-15鱼鱼

IO多路复用模型:select、poll、epoll对比

IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别
IO多路复用模型:select、poll、epoll对比2020-08-11鱼鱼

造轮子2 灵活运用反射

造轮子2 灵活运用反射//TODO
造轮子2 灵活运用反射2019-05-25鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}