Spring的事务
Spring的事务Spring事务将一系列操作绑定为具有原子性的操作,此篇文章讲基于Spring提供的声明式事务 MySQL的事务我们已经明白,Spring的事务是委派了ORM框架来解决相应的问题,在jdbc中,体现的就是在Mybatis框架中,体现的就是SqlSession的建立到提交 声明式事务:在方法或是实现类上加上以下注解: 其中一些常用参数: propagation:配置事务传播行为;(后面详细解读) isolation:事务隔离级别; timeout:超时时间; roolbackFor:导致事务回滚的异常类设置; readOnly:boolean,是否只读 有七种事务传播行为,用来决策当发生事务嵌套时的解决方案
![Spring的事务]()
2019-07-18鱼鱼
tips
tips一些小tip: 向上转型,失去特征 定义相同对象,重写hash和(不是或)equal Vue.nextTick() 回调函数:在Vue(重新)渲染页面之后调用 vue绑定样式,我们会发现background-color 不能直接绑定 需写为backgroundColor 因为js中不允许出现‘-’ 存库之前,mysql会把换行符什么的过滤掉,使得出入不一致(应用场景:textarea存)解决:this.value.replace(/\n|\r\n/g,"
") linux下的mysql的表名是区分大小写的! 实现线程接口 Runnable 注解注入失败 注解注入失败 Linux下缺少部分字体,使用drawString会出问题(二维码模块),解决手段:从windows引入字体,因为不是什么主流问题所以就简单写一下,如果再碰到相关问题在详细的讲述一下
![tips]()
2019-05-08鱼鱼
用Quartz 写定时任务
用Quartz 写定时任务Quartz是OpenSymphony开源组织在Job scheduling领域的一个开源项目,是一款清新友好的任务调度框架 Quartz两大基本功能是job和SimpleTrigger(作业和触发器) 核心的是Scheduler类 有以下几个相关类: Scheduler:定时任务调度; Job:任务类需要实现的接口; JobDetail:Job的实例,被Scheduler执行的是JobDetail,而不是Job; Trigger:触发Job的执行; JobBuilder:定义和创建JobDetail实例的接口; TriggerBuilder:定义和创建Trigger实例的接口;

2019-06-18鱼鱼
数据库的瓶颈问题解决(主从分离)与多数据源切换
数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失

2019-08-29鱼鱼
Elasticsearch 入门
Elasticsearch 入门(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度

2020-03-06鱼鱼
ELK全家桶基本使用(I)文件收集Filebeat
ELK全家桶基本使用(I)文件收集FilebeatFilebeat是Elastic中的轻量文件收集系统,相比于功能更强悍的Logstash,当我们需求很单一,读取文件内容且对文件内容没有过多复杂处理时,最好使用FileBeat取代Logstash,以免造成不必要的内存开销 文档链接 Filebeat负责收集文件并发送给下游服务 核心行为包含输入、处理过滤和输出 当然也有集成好配置的模块,通过模块与Es和Kibana链接可以直接在Kibana上看到组件的可视化 同时不难看出Filebeat其实对数据库的支持不是很健壮 截止7.6版本,开源的Filebeat可支持以下几种消息输入类型: log 用得最多的输入类型; stdin 标准的输入,从process或是piepline读取(可理解为脚本运行通道直接输入),一旦配置了这种input方式,其他 input将不再生效文档地址;

2020-03-16鱼鱼
造轮子0 浅谈设计模式
造轮子0 浅谈设计模式语义化接口的使用,譬如Aware等接口完全是语义性接口,不定义任何方法,只是用来约束一类行为 在Spring框架中有很多类似的接口 Wrapper,包装 ,相当于一个装饰器 XxxAware类表示在Spring中可感知,一般是类中需要用到Spring相关的对象时使用的 例如继承ApplicationContextAware接口后,实现setApplicationContext(ApplicationContext applicationContext)便会获得这个对象,与之对应的是XxxCapable类,继承他的类要负责实现相关的方get法负责生成Spring需要的对象
![造轮子0 浅谈设计模式]()
2019-05-26鱼鱼
分布式系统中的一致性算法和问题解决
分布式系统中的一致性算法和问题解决在撰写脑裂问题相关的博客时发现脑裂问题的产生原因在不同算法下的分布式系统各不相同,需要先大致了解一致性算法并针对性的解决 市面上有很多开源的分布式系统,他们的数据一致性算法不尽相同,例如k-v系统的祖师爷——zookeeper采用的是ZAB的算法,而最近流行的Consul是raft算法,不同数据中心server沟通的方式则是gossip协议 不同的协议和方式对选举和数据同步有不同的处理机制,利用这篇文章来对比常见的分布式一致性算法 一个系统可能会使用多个不同的一致性算法,以便于在不同的业务环节上有着各自更贴切的处理 ps:有种观点是一致性算法不是很准确,因为replica也能保证数据某种程度上具有一致性,有人称之为共识算法

2021-03-13鱼鱼
DDD领域下的架构模式——CQRS架构
DDD领域下的架构模式——CQRS架构//TODO
![DDD领域下的架构模式——CQRS架构]()
2021-06-24鱼鱼
动态路由数据源(多租户)解决方案
动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)

2021-01-07鱼鱼
Kafka服务端集群原理
Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息

2022-03-10鱼鱼
ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼