JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析在Spring获取Context的源代码中,我们看到了对ClassUtil的方法调用,通过给定ClassName和ClassLoader进行Class的加载: ClassUtil.forName是仅供于Spring内部使用的获取Class对象的方法,来看一下源码: 首先 对于缓存的Class一块,在类的静态块中就能看出其逻辑: 在上面的resolvePrimitiveClassName方法中,先对长度做了一个判断,因为较长的packagename会影响执行的性能: 最终加载Class依旧是通过ClassLoader的,先来看一下获取ClassLoader的方法实现: 此处优先使用了ContextClassLoader作为 类加载器而非默认的AppClassLoader,在JVM源码解析 从 Launcher类浅谈ClassLoader中,提到了关于 类加载器的相关知识,使用ContextClassLoader是为了弥补双亲委派加载机制的对于自定义 类加载器的缺憾:那些自定义的 类加载器并没有机会上场,在使用了AppClassLoader后我们的自定义ClassLoader所加载的Class是无法被加载进去的,使用ContextClassLoader,我们可以在定义线程时,通过Thread的init方法(子线程调用,私有方法)或是setContextClassLoader直接指定使用自定义的ClassLoader
![JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析]()
2020-08-16鱼鱼
基于Consul的服务注册与发现
基于Consul的服务注册与发现注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务

2020-01-10鱼鱼
浅析RPC框架Thrift
浅析RPC框架ThriftThrift是由Facebook开发的 RPC远程调用的框架,使用独有的Thrift协议进行可跨语言的远程调用 有点类似protobuf 无论使用何种语言,首先要准备Thrift编译环境,可以去官网下载相应的Thrift执行文件,下文均以Windows为例 下载后可以选择性的配置环境变量,最终在shell中可执行Thrift 在项目中,预先准备好libthrift依赖,maven写法: 例如: 定义一个testService.thrift(idl文件名不重要),一般都会定义在resources的thrift文件夹下: 这里定义了两个方法,分别返回字符串和int类型,在thrift的idl中,对于变量的定义如下:

2022-03-04鱼鱼
算法1
算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高

2019-03-14Sherlock
ES快速入门(2)——Tokenizer、Reindex
ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
![ES快速入门(2)——Tokenizer、Reindex]()
2020-09-05鱼鱼
ES快速入门(I)——分析分词器
ES快速入门(I)——分析分词器本文旨在快速入门Elasticsearch的分词,包括分词分析器的创建和介绍对比等,请确保在阅读前已经搭建好完备的集群 文章基于es7.0+,与稍旧版本的主要区别是没有type 在讨论分词前,我们先看一下es整体创建倒排的分词过程: 我们常说的分词器指的其实是“分析器”analyzer,es将以上常用的逻辑封装起来成为analyzer,但是语义上的分词器是指上面的tokenizer 经过了三层处理后拿到了terms数组建立最终的倒排索引: character filter:一般不会用到这个filter,是在分词前对原有的文档字段内容做转换,例如去除html的标签提取出正文内容,按正则清除和替换某些内容,你可以指定及自定义0个到多个character filter,他们将共同存在,一个文本流在经过character filter处理后,依然是文本流;
![ES快速入门(I)——分析分词器]()
2020-09-01鱼鱼
Kafka服务端集群原理
Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息

2022-03-10鱼鱼
算法:Trie(前缀树、字典树)
算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符

2021-01-19鱼鱼
使用Shiro和token进行无状态登录
使用Shiro和token进行无状态登录我们之前可以使用shiro实现登录,但这些都是基于session或是cookie实现的,这些只能用于单机部署的服务,或是分布式服务共享会话,显然后者开销极大,所以JWT(JSON Web Token)应运而生,JWT是一套约定好的认证协议,通过请求携带令牌来访问那些需鉴权的接口 我们在这里使用token,原理类似,但是规则更为简单,没有形式上的约束,只是在请求Head或是body中添加token用于校验用户身份,token是可以和会话共存的,此处我们使用Shiro的会话登录结合JWT来实现无状态登录,从而实现扫码登录和一般的接口访问授权 项目中,需要实现无状态登录(单点登录,SSO),但是同时也要保持Shiro本身自带的会话登录
![使用Shiro和token进行无状态登录]()
2020-03-22鱼鱼
Rocket MQ的基本应用
Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息

2019-06-28鱼鱼
[Quick Start]RedisTemplate的bean手动配置
[Quick Start]RedisTemplate的bean手动配置 有时我们可能需要手动配置Redis的连接,例如动态修改或是从特殊的参数中获取,而不是使用SpringBoot的自有配置,此篇文章意在快速指引redis的手动配置 基于Spring项目和Jedis的底层,使用RedisTemplate; 通过Maven引入相关依赖,可以的话spring-data-redis选择2.0.0以上版本,较低版本需要的依赖: 如果使用了Spring-boot并且要使用较高的版本(例如在2.1.0后才有的某些API-putIfAbsent带有超时时间的版本),我们直接修改starter的版本是不够的,二者版本并不对称,我们需要去掉其中的redis依赖并单独引入 建议保持良好的依赖管理习惯,显式的移除依赖,而不是任其覆盖,如:
![[Quick Start]RedisTemplate的bean手动配置](/blog_cover/20200220/bc7458d39b07471f8559d5469418133f.png)
2020-02-24鱼鱼
MySQL的数据锁 加在哪?
MySQL的数据锁 加在哪?此篇文章探讨MySQL数据库的锁,讨论MySQL各种语句将如何加锁,以及加锁的“效果”,主要针对默认的InnoDb引擎 基于MySQL5.6之后的版本 有心力的可以直接看MySQL官方文档,说的更为详细:14.7.3由InnoDB中的不同SQL语句设置的锁 按类型分,MySQL有锁: 行锁,最普通的锁,其实是加在索引上的锁 表锁,直接加在整张表的锁,一旦上锁整张表的操作都会比较锁 间隙锁,又称GAP锁,用于在涉及范围查询时给莫须有的位置加锁,防止并发插入等操作出现数据不一致(诸如幻读)的问题 间隙锁之间是不会冲突的 行锁与Gap锁合称Next-Key锁 间隙锁只能锁住间隙,即间隙锁不能指定具体的数据范围,将会锁上整个间隙

2021-02-05鱼鱼