MySQL tips
MySQL tips一些日常接触到的MySQL优化tips,比较散乱 假设有一个用户表,对于一句很简单的查询语句: 假设name与age字段均有单列索引,容易想到的是,MySQL应该会分别走两次索引,并将其结合起来,EXPLAIN也是如此,大多数时候MySQL会进行优化,我们可能会看到EXPLAIN的结果中有Using union或Using soft union,这是MySQL针对OR做了隐性的优化,但当SQL复杂或数据极端情况下,这一语句极容易变成全表扫描,偶尔使用联合索引可能解决问题,更多情况则是MySQL“昏了头”,即使OR条件均涉及数据条数不多,依旧没能在查询语句中使用索引,此时应调整为UNION语句(可以权衡一下重复及顺序是否有影响,可以使用更快的UNION ALL):

2021-01-13鱼鱼
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
![Redis高级特性:事务和pipelined以及在RedisTemplate中的应用]()
2020-06-21鱼鱼
过滤器、拦截器、监听器和AOP
过滤器、拦截器、监听器和AOP用这篇文章来梳理一下这些杂七杂八的Spring MVC中的基础概念,顺便讲一下在项目中的一些基本使用和常见应用(其实主要是针对AOP的),至于使用他们实现具体的功能,后续可能会独立写出来(谁知道呢) 执行的顺序: 项目初始化:filter:init()->filter:doFilter()->preHandle->Controller->postHandle->afterComplition ->destory() 过滤器(Filter),由servlet提供,拦截URL(其实是servlet),经过代理,执行想要的方法,最基本的使用是集成Filter类并重写方法,因为是从url层面上直接拦截,可以有很多用途,比如用于用户身份校验,比如某些页面需要有用户权限才能访问,就可以利用过滤器进行拦截,一些安全框架的鉴权本身也是过滤器的实现
![过滤器、拦截器、监听器和AOP]()
2020-03-01鱼鱼
Elasticsearch 入门
Elasticsearch 入门(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度

2020-03-06鱼鱼
分布式系统一致性的分类
分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功

2021-03-13鱼鱼
Redis原理-源码解析:数据结构3 hash
Redis原理-源码解析:数据结构3 hash 所有原理实现基于Redis版本6.0.9 hash在Redis中可以认为是套了一层的string,当然,对hash来说没有数字类型 让我们依旧通过基本命令看看hash的基本数据结构实现 在set方法中我们看到了hash的初始创建过程,一个hash最开始是zipist 想要了解ziplist可以看Redis原理-源码解析:数据结构2 list ,是为节省内存而生的链表格式 所以其实在使用ziplist时其查询的时间复杂度不是遵循hash的近似O(1),而是O(n),但是在数据量不大时,这种性能的损失微乎其微,并且能预见到大多数使用hash的场景都不会存储过多的字段 所以优先使用了更节省内存空间的ziplist

2020-11-29鱼鱼
算法:Trie(前缀树、字典树)
算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符

2021-01-19鱼鱼
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听查看源码的顺序就见仁见智了,比较普遍的做法是从IoC入手,了解容器注入的每一个环节,掌握大致的流程 由于使用的是Spring,所以在这里我们引入比较古老的xml配置文件进行bean的配置,首先定义一个bean: 配置描述bean的xml,核心只有一行: 这样一来就可以使用BeanFactory这个容器来注入bean并使用了: 本来有封装好的XmlBeanFactory,这一类现在已经被弃用了,所以采用了他的父类DefaultListableBeanFactory;当然,也可以使用更加方便和常用的ApplicationContext: 当然从xml文件读取bean的配置只是其中一种目前用的不多的加载方式,还有基于包扫描等加载bean的方法,此处仅为理解IoC的基本使用

2020-08-04鱼鱼
kasper的算法(从0到1)
kasper的算法(从0到1)https://javaguide.cn/cs-basics/data-structure/linear-data-structure.html https://javaguide.cn/cs-basics/algorithms/linkedlist-algorithm-problems.html 项目地址:https://github.com/labuladong/fucking-algorithm 在线文档地址:https://labuladong.gitee.io/algo/home/ http://fishmaple.cn/blog/topicBlog?topicId=7
![kasper的算法(从0到1)]()
2023-10-23kasper
Java中的协程(虚拟线程)探究
Java中的协程(虚拟线程)探究在Java最新的LTS版本 21中,终于实装了协程这一特性 当然,在这些诸如python、golang等轻量级语言中被称为协程的东西,在Java中有个全新的代号——虚拟线程,为了将协程与线程做区分,在Java21中,原Thread被称之为平台线程 下文中,将统一使用线程/协程的方式称呼 我们都知道,Java中引入了线程的概念,区别于系统中的进程 作为并发执行的最小单元,在一定的条件下,使用多个线程同时运作可以有效提高程序的运转效率 而线程这一能力源于系统本身而并非JVM 之所以说是在一定条件下,是因为受限于机器配置情况(CPU的运作机制、核心数),线程的同时运作并不能线性的提升运行性能,单个cpu并不能同时处理多线程任务,实际的运作方式是基于时间片分片,各个线程抢占式执行代码,这样能减少一些无效的io等待(例如网络io、磁盘io实际是会阻塞等待io结果),同时在多核心场景下也能有效利用cpu
![Java中的协程(虚拟线程)探究]()
2024-10-28鱼鱼
[Quick Start]使用RedisTemplate操作Redis
[Quick Start]使用RedisTemplate操作RedisRedisTemplate现在作为使用率最高的redis三方类库,隶属Spring技术栈,此篇文章意在指引RedisTemplate的快速上手 在实践前,请确保已经有一个可连接的Redis服务 Redis有五大基本数据类型:string、hash、list、set和zset string即是最单纯的k-v存储方式,使用set、get等指令 hash是哈希表的存储方式,比较适合用来存储对象,每一条value相当于Java的一个Map,使用hmset、hget等指令 list是简单的有序列表,每一条value相当于Java的一个List,使用lpush、lpop、rpush、rpop等指令
![[Quick Start]使用RedisTemplate操作Redis](/blog_cover/20200220/cdd943f261664778a1c746b93930db3a.png)
2020-02-23鱼鱼
MySQL的数据锁 加在哪?
MySQL的数据锁 加在哪?此篇文章探讨MySQL数据库的锁,讨论MySQL各种语句将如何加锁,以及加锁的“效果”,主要针对默认的InnoDb引擎 基于MySQL5.6之后的版本 有心力的可以直接看MySQL官方文档,说的更为详细:14.7.3由InnoDB中的不同SQL语句设置的锁 按类型分,MySQL有锁: 行锁,最普通的锁,其实是加在索引上的锁 表锁,直接加在整张表的锁,一旦上锁整张表的操作都会比较锁 间隙锁,又称GAP锁,用于在涉及范围查询时给莫须有的位置加锁,防止并发插入等操作出现数据不一致(诸如幻读)的问题 间隙锁之间是不会冲突的 行锁与Gap锁合称Next-Key锁 间隙锁只能锁住间隙,即间隙锁不能指定具体的数据范围,将会锁上整个间隙

2021-02-05鱼鱼