Redis高级特性:事务和pipelined以及在RedisTemplate中的应用
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
![Redis高级特性:事务和pipelined以及在RedisTemplate中的应用]()
2020-06-21鱼鱼
空
空1
![空]()
2025-09-05鱼鱼
阿里巴巴Java开发手册 华山版 v1.5
阿里巴巴Java开发手册 华山版 v1.5《Java 开发手册》是阿里巴巴集团技术团队的集体智慧结晶和经验总结,经历了多次大规模一线实战的检验及不断完善,公开到业界后,众多社区开发者踊跃参与,共同打磨完善,系统化地整理成册 现代软件行业的高速发展对开发者的综合素质要求越来越高,因为不仅是编程知识点,其它维度的知识点也会影响到软件的最终交付质量 比如:数据库的表结构和索引设计缺陷可能带来软件上的架构缺陷或性能风险;工程结构混乱导致后续维护艰难;没有鉴权的漏洞代码易被黑客攻击等等 所以本手册以 Java 开发者为中心视角,划分为编程规约、异常日志、单元测试、安全规约、MySQL 数据库、工程结构、设计规约七个维度,再根据内容特征,细分成若干二级子目录

2020-02-24鱼鱼
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证
Redis原理-源码解析:数据结构1 字符串操作&SDS及预分配的实现验证所有原理实现基于Redis版本6.0.9 SDS(Simple Dynamic String)简单动态字符串,是Redis中字符串所采取的数据结构,SDS并不是Redis的独创,只是被Redis采纳的一种数据结构,用以替换C语言原生的字符串类型:sds仓库传送门 使用方法与原生的C语言字符串类似,并能提供很多类似的API SDS经过了两个版本,目前的解析大都基于v1 v1版本的sds数据结构很简单: 比起C语言中单一的字符数组构成的字符串,sds具有以下优势: 存储了字符串长度,相比C语言遍历获取长度,将时间复杂度由O(n)变为O(1); 当SDS每次发生修改时,会为其分配冗余空间,在字符串空间小于1MB时,每次分配实际长度2倍的空间,而在大于1MB时则是分配多1MB的空间,是在空间不足时才会触发分配

2020-11-16鱼鱼
分布式系统中的CAP原则与BASE原则
分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性

2019-09-29鱼鱼
算法:深度优先搜索(DFS)
算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
![算法:深度优先搜索(DFS)]()
2020-06-27鱼鱼
浅谈代理-动态代理
浅谈代理-动态代理我们可以很轻松的实现一个简单的代理 实现静态代理是个很简单的事情,最基础的代理只需要定义一个接口(虽然不是必要,但这显然才是标准的设计)、一个被代理类和一个代理类,例如: 定义一个接口: 一个实现类: 和一个代理类: 实际使用时,我们是去调用HelloWorldProxy的方法,其将作为HelloWorld的代理实现 此种方式直接实现的代理太过于死板,因为每一种代理行为都要制定一个代理类,我们熟知的很多基于代理的实现(譬如AOP、事务)显然不可能用静态代理的方式针对每一处类切点都覆写一个代理类,这种时候就需要动态代理 我们所熟知的相当多的框架均基于动态代理开发,JDK本身基于反射(java.lang.reflect)提供了动态代理,我们只需定义代理的行为,而对于代理类的范围并不是固定值
![浅谈代理-动态代理]()
2020-10-13鱼鱼
有关Session的碎碎念-ban掉cookie之后
有关Session的碎碎念-ban掉cookie之后java web中, 用session来表示用户浏览器(客户端)与服务器建立的一次会话 通常用sessionId来标记一个session,在Java中,有很简单的方式直接获取sessionId; 但是sessionId并不是session的特性,实际上,sessionId是在客户端首次创建会话时将生成的sessionId存入cookie中,在之后的访问中直接读取这个id值 当客户端禁止了cookie行为后,SessionId在每次刷新页面时都会更新,利用id来表示会话也成为了妄想,此篇文章意在说明,如何操作能使SessionId能够独立于cookie使用 这种操作其实在shiro中已经被应用了,当我们进入登录页面中,url后会出现";jssionid=xxxxxx",将sessionid显示的标注在url中,可以使用:
![有关Session的碎碎念-ban掉cookie之后]()
2019-03-08鱼鱼
对多线程的执行效率探究——合理的任务并发拆分
对多线程的执行效率探究——合理的任务并发拆分通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间

2019-12-09鱼鱼
阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解
阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解CAT是美团点评的一个基于Java开发的异常和性能监控项目,github地址:https://github.com/dianping/cat 本篇文章不是对CAT本身的源码拆解,而是基于本人依赖CAT client开发的代理项目进行拆解,但是并不会纰漏任何技术细节 CAT当前已有很多不同语言的Client,当然暂且是不 CAT本身是通过CAT client收集数据并上报至CAT server,server会进行并,共有六种常见数据格式:Transaction、Event、Problem、Metric、HeartBeat、调用链标记,其实如果不考虑复杂的处理(譬如Metric是可以基于指标生成折线图,Problem可以根据具体的异常类型追溯到相应的会话Track)除去Transaction剩余的数据格式都可以理解为特殊的Event

2020-07-19鱼鱼
网络协议面面观:TCP/IP协议组,TCP与UDP
网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:

2020-03-03鱼鱼
算法:Trie(前缀树、字典树)
算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符

2021-01-19鱼鱼