Spring MVC源码和设计思想1 DispatcherServlet

Spring MVC源码和设计思想1 DispatcherServlet此篇文章是个人通过阅览Spring MVC源码的学习过程记录,包含Spring MVC的关键细节源码设计和一些设计上的tips,更近似于一种意识流的记录方式,锚点设置可能也有些乱,零零散散的点我日后有时间会统一总结起来 Restful风格的Http有八种请求方式,除了最常使用的Get与Post还有Head、Put、Delete、Options、Trace、Connect 在Restful接口的设计中,请求方方式的语义性很强,我们时常用他约束接口请求的行为,请求类型的语义: OPTIONS获取服务器支持的HTTP请求方法; HEAD跟get很像,但是不返回响应体信息,用于检查对象是否存在,并获取包含在响应消息头中的信息
Spring MVC源码和设计思想1  DispatcherServlet2019-06-03鱼鱼

Java中的动态代理与静态代理

Java中的动态代理与静态代理proxy(代理)作为一种设计模式在Java中已经应用非常广泛,例如常见的拦截器是代理模式设计的,AOP是通过动态代理实现的,而基于AOP的应用就更多了,从简单的事务应用到Dubbo框架,Java开发中离不开代理,本篇文章主要阐述Java中的代理,此处是比较狭义的代理,仅指方法和类中的代理 代理模式是一种非常常见的设计模式,它通过给某对象提供代理,从而通过代理对象控制原对象的引用 以下是代理模式的简单实现: 类Admin: 对应的代理类AdminProxy: 设计良好的聚合代理模式应该是代理类与被代理类共同继承一个接口,此处只为实现功能 这样在执行new AdminProxy().changeWorld()时,除了会调用原本的new Admin().changeWorld(),在方法前后也可以做出些其他的操作
Java中的动态代理与静态代理2019-08-09鱼鱼

动态路由数据源(多租户)解决方案

动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)
动态路由数据源(多租户)解决方案2021-01-07鱼鱼

算法:Trie(前缀树、字典树)

算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符
算法:Trie(前缀树、字典树)2021-01-19鱼鱼

ES快速入门(2)——Tokenizer、Reindex

ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
ES快速入门(2)——Tokenizer、Reindex2020-09-05鱼鱼

数据库的瓶颈问题解决(主从分离)与多数据源切换

数据库的瓶颈问题解决(主从分离)与多数据源切换业务中,数据库的设计是极为重要的一环,在高并发的业务中,我们可以采用集群部署来缓解请求和逻辑处理的压力,但是在数据库的层面却不行,Oracle、Mysql等数据库的吞吐量很高,但是依旧有阈值,我们不能奢求单库能解决所有的问题,假设遇到了数据库的瓶颈问题,我们可以采用怎样的手段呢 想要数据库达到瓶颈(SQL执行效率明显变慢),其实是很困难的,我们在程序的设计中基本都会使用到数据库连接池控制数据连接,但当业务量提升之后,连接池若是经常达到饱和便容易产生阻塞,我们不得不开放更多的连接数,随之而来的便是数据库承载了更多的并发,解决问题的主要方式有三: 更细的划分业务逻辑,将高频业务表单独分离开来,并通过定期清理的方式减小查询的执行时间,将不同的数据库请求分发到不同服务器的不同库,可以一定程度下解决上文所述的问题,但是应以数据库的设计性为前提,绝对不能牺牲原有设计合理的数据结构将其进行拆分,得不偿失
数据库的瓶颈问题解决(主从分离)与多数据源切换2019-08-29鱼鱼

安全框架的使用:Shiro

安全框架的使用:ShiroShiro与Sping Security均是java的安全框架,主要用于处理用户身份验证和授权 常见场景为用户系统登录 Shiro易用性强,提供了认证,授权,加密,和会话管理功能 Shiro的三大核心组件 : Subject:即当前用户概念,不止代表着某用户,也可以是进程或任何可能的事物 SecurityManager:即所有Subject的管理者,可以把他看做是一个Shiro框架的全局管理组件,用于调度各种Shiro框架的服务 作用类似于SpringMVC中的DispatcherServlet,用于拦截所有请求并进行处理 Realm:Realm是用户的信息认证器和用户的权限认证器,我们需要自己来实现Realm来自定义的管理我们自己系统内部的权限规则
安全框架的使用:Shiro2019-09-29鱼鱼

数据库的并发、锁机制与MVCC

数据库的并发、锁机制与MVCC在日常开发中,经常遇到数据库进行高并发操作的情况,但是我们处理并发一般都只在代码范畴而并不处理具体的数据库操作,这是因为数据库对基本的数据库操作做了锁处理,让我们可以忽略这一层的并发问题 详细可以参考Mysql的官方文档 注意:这一篇博客是针对MySQL数据库,且实用默认的 引擎InnoDb,使用其他数据库可能存在略微的差异 MySQL默认的数据库引擎InnoDB中Autocommit值为0(即自动提交事务)执行SQL语句的时候,每一条SQL语句都是一条单独的事务,所以并不存在并发的问题,数据库的锁机制已经做了很好的处理 但是当我们开启事务时,若不加处理,可能会产生一系列并发带来的问题
数据库的并发、锁机制与MVCC2021-01-24鱼鱼

Java排坑指南(I)jmap jstack jstat等的使用

Java排坑指南(I)jmap jstack jstat等的使用运用一些Java自带的可执行jar可以从内存的角度更轻松的排除项目中的问题,我们可能会遇到一些不常见却相对很致命的问题,例如: 某些web项目CPU跑到了100%并且飙高不下(一般来说,web应用都为IO密集应用,不太可能出现cpu高占用的情况) 项目中线程出现阻滞、阻塞(网络请求响应速度明显变慢,甚至因为死锁彻底出现阻塞等) 极可能由内存泄漏引发的不明原因的 OOM(没有预兆的或是基础逻辑问题的内存溢出) 当以上问题发生时,通过代码或是日志其实很难定位到原因所在,因为这一般是基于环境或资源导致的全局性问题,通常很难定位,这时可以通过使用Java自带的性能调优jar包更便捷的定位问题(如果没有配置环境变量,可以在jdk的bin目录下找到他们的jar包)
Java排坑指南(I)jmap jstack jstat等的使用2020-11-28鱼鱼

Spring源码解析(3) IoC容器配置读取和容器refresh

Spring源码解析(3) IoC容器配置读取和容器refresh在文章Spring源码解析(I) 基于SSM看Spring的使用和Spring启动监听中,讲述了web容器启动后会触发的方法实现中生成Context的部分,回顾下核心方法: 我们已经分析到了0.处,他对我们生成的容器做了一个判断,对于web.xml监听初始化的Context,其生成的WebApplicationContext都是ConfigurableWebApplicationContext的子类,所以必然会进入if分支 首先通过loadParentContext先加载了父容器,默认是null 然后调用了configureAndRefreshWebApplicationContext方法进行初始化和配置项的读取
Spring源码解析(3)  IoC容器配置读取和容器refresh2020-08-09鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

IO多路复用模型:select、poll、epoll对比

IO多路复用模型:select、poll、epoll对比我们平时提到的I/O几乎都是同步 阻塞模型,譬如网络请求的socket IO,在数据返回前,相应的线程或是进程将会一直 阻塞直到数据返回,比较直接的处理便是针对IO流一对一的监听,但在IO返回前,相应的系统资源会平白无故的浪费,这种处理方式会大大降低服务器的吞吐 如果我们用很少的线程来监听这些IO,就能实现对系统资源的更好利用,在相应的socket有数据返回时才去读取数据 这种方式被称作IO多路复用,在Linux系统中,实现IO多路复用的方式(从古老到新)有select、poll和epoll 现在很多中间件都使用epoll IO多路复用模型才因此有着很高的性能和吞吐 此处简单描述三种方式的实现和区别
IO多路复用模型:select、poll、epoll对比2020-08-11鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}