Redis原理-源码解析:数据结构3 sorted set(zset))

Redis原理-源码解析:数据结构3 sorted set(zset))Redis的set数据结构在此不多讲,同Java中原理一样,set也可以理解为是hash剥离了value的数据结构,即同为dic 但是zset(有序集合)其实在底层原理上完全不同于set 所有原理实现基于Redis版本6.0.9 先看一下基本的指令实现,着重注意中文注解的地方 t_zset.c 可以看出zset的数据结构不是固定的,在其元素数或是元素的字符串过长时,其结构为zset;否则使用ziplist数据结构(像hash一样为了节省空间),二者的创建方法如下: ziplist的代码和原理可以参考我的博客Redis原理-源码解析:数据结构2 list-鱼鱼的Java小站,就是一个节省内存的压缩的链表结构
Redis原理-源码解析:数据结构3 sorted set(zset))2021-02-28鱼鱼

Consul API文档

Consul API文档这是一个记录Consul 常用API的文档,因为Consul的跨语言性,所以http API在Consul中尤为重要,此文档基于Consul版本1.6.0的v1 API,有其他的变化请参阅Consul官方API文档 Consul API采用经典的rest图谱Consul API版本只有一个版本,所以所有的前缀都为 /v1/,返回值以Json格式传输,可以添加pretty参数格式化Json,以本地部署为例,整体的baseUrl为127.0.0.1:8500/v1/ 获取代理成员列表和基本信息,类似于指令'consul members' 开启维护模式后,该代理节点将会被标注为不可用,可以用于上线前临时屏蔽node的服务
Consul API文档2019-12-01鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

Elasticsearch 入门

Elasticsearch 入门(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度
Elasticsearch 入门2020-03-06鱼鱼

关于多数据源的那些事儿(萌新向)

关于多数据源的那些事儿(萌新向)在日常的JAVA后端开发中多数据源的应用场景并不少见,但对于刚刚接触springboot或是刚刚接触工程化开发的萌新来说却仿佛是一座不可逾越的高山,因为新手常常会局限于某些“固定的”项目配置,不知道如何配置?从哪里开始配置?以及什么能改什么不能改 这种现象在用惯了springboot便捷开发的老手中也很常见,众所周知,相比于spring的springboot简化了很多工程前置配置,虽然增加了工作效率却也使得开发人员失去了了解基础配置的机会 综上,本文主要讲解如何在springboot环境中,以一种最简单的、即起即用的、不依赖中间件和数据库切片的方式配置单一项目的多数据源 限于笔者能力有限,经验尚浅,若有描述不当之处,敬请批评指正
关于多数据源的那些事儿(萌新向)2019-06-28Agostino

用Quartz 写定时任务

用Quartz 写定时任务Quartz是OpenSymphony开源组织在Job scheduling领域的一个开源项目,是一款清新友好的任务调度框架 Quartz两大基本功能是job和SimpleTrigger(作业和触发器) 核心的是Scheduler类 有以下几个相关类: Scheduler:定时任务调度; Job:任务类需要实现的接口; JobDetail:Job的实例,被Scheduler执行的是JobDetail,而不是Job; Trigger:触发Job的执行; JobBuilder:定义和创建JobDetail实例的接口; TriggerBuilder:定义和创建Trigger实例的接口;
用Quartz 写定时任务2019-06-18鱼鱼

Redis原理-源码解析:数据结构3 hash

Redis原理-源码解析:数据结构3 hash 所有原理实现基于Redis版本6.0.9 hash在Redis中可以认为是套了一层的string,当然,对hash来说没有数字类型 让我们依旧通过基本命令看看hash的基本数据结构实现 在set方法中我们看到了hash的初始创建过程,一个hash最开始是zipist 想要了解ziplist可以看Redis原理-源码解析:数据结构2 list ,是为节省内存而生的链表格式 所以其实在使用ziplist时其查询的时间复杂度不是遵循hash的近似O(1),而是O(n),但是在数据量不大时,这种性能的损失微乎其微,并且能预见到大多数使用hash的场景都不会存储过多的字段 所以优先使用了更节省内存空间的ziplist
Redis原理-源码解析:数据结构3 hash 2020-11-29鱼鱼

代理与nginx

代理与nginx代理指接受请求但是不由代理服务器自己处理请求而是直接转发给指定服务器(或是根据负载均衡算法转发给集群部署中的某一台服务器),然后由代理服务器接收请求结果并返回给客户端 指客户端的代理处理方式,指用户通过代理服务器访问指定的网站、服务,最常见的应用是翻墙,并且使用这种方式可以使客户端匿名访问 指服务端的代理处理方式,多个用户在访问网站服务时,实际访问的是反向代理服务器(如nginx),反向代理服务器将请求内容转发给服务集群,最常用于服务器集群负载均衡和避免内网信息暴露 总之,正向代理是对服务端隐藏了客户端信息,反向代理则正相反,有一张图可以很好地概括这两个代理概念(图源知乎,侵删)
代理与nginx2019-05-11鱼鱼

多线程应用提高(IV) 线程安全的集合类

多线程应用提高(IV) 线程安全的集合类在Java中的数据结构一篇中,列举了Java中一些常见的集合,此文主要梳理线程安全的相关集合 我们知道,当一个实例对象只能被一个线程访问时(线程私有),无论如何都不会有线程安全的问题,但在多线程的情境下,多个线程操作同一个对象时,可能会出现更新丢失、读写数据不同步、计数击穿等现象,此时这种操作就是非线程安全的 相应地,线程安全的集合有这样的特点:在多个线程操作同一集合时,能保证每一步操作都是安全的,与串行执行的结果一致,不会出现数据不同步等预料之外的问题 可以先看这个小例子Java-lab/ListT.java at master · fishstormX/Java-lab,我在里面解释了
多线程应用提高(IV) 线程安全的集合类2019-07-13鱼鱼

Kafka服务端集群原理

Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息
Kafka服务端集群原理2022-03-10鱼鱼

动态路由数据源(多租户)解决方案

动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)
动态路由数据源(多租户)解决方案2021-01-07鱼鱼

Java中的协程(虚拟线程)探究

Java中的协程(虚拟线程)探究在Java最新的LTS版本 21中,终于实装了协程这一特性 当然,在这些诸如python、golang等轻量级语言中被称为协程的东西,在Java中有个全新的代号——虚拟线程,为了将协程与线程做区分,在Java21中,原Thread被称之为平台线程 下文中,将统一使用线程/协程的方式称呼 我们都知道,Java中引入了线程的概念,区别于系统中的进程 作为并发执行的最小单元,在一定的条件下,使用多个线程同时运作可以有效提高程序的运转效率 而线程这一能力源于系统本身而并非JVM 之所以说是在一定条件下,是因为受限于机器配置情况(CPU的运作机制、核心数),线程的同时运作并不能线性的提升运行性能,单个cpu并不能同时处理多线程任务,实际的运作方式是基于时间片分片,各个线程抢占式执行代码,这样能减少一些无效的io等待(例如网络io、磁盘io实际是会阻塞等待io结果),同时在多核心场景下也能有效利用cpu
Java中的协程(虚拟线程)探究2024-10-28鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}