Redis原理-源码解析:数据结构2 list

Redis原理-源码解析:数据结构2 list所有原理实现基于Redis版本6.0.9 Redis中的list采用的是链表,在开始前,我们先看看list的最基本指令实现 t-list.c 由此可知,Redis的List底层数据结构都是基于quickList的 这是list所依赖的数据结构: quicklist.h 我们注意到其是由quicklistNode所构成的链表,而其中的数据实则为zl(ziplist)或是bookmark,在大多时候quicklistNode都使用ziplist存储数据 在上文中lpush执行了一个插入方法quicklistPush,在quicklist.c中有他的实现: quicklist真正存储数据的结构是ziplist,所以倒不如说,在Redis中,list是一个由ziplist节点构成的链表
Redis原理-源码解析:数据结构2 list2020-11-28鱼鱼

扫盲——加密那些事

扫盲——加密那些事扫盲加密解密算法 日常开发中我们经常接触MD5算法,以此进行简单的文件完整性校验或者是后台密码验证,MD5是最常见也是最简单快捷的散列算法,常用于参数或文件完整性校验,譬如网络请求发起方与接收方分别对参数做MD5编码,一旦不一致便判断请求被篡改从而拒绝该请求,从而保证信息安全,编码后的字符串是编码前文本的一个简要梗概,因此它也被称作是信息摘要算法 这个算法的特点就是不可逆,只用于信息准确性和防篡改的校验,当然,MD5作为老牌的散列算法,很多经典的编码已经可以被反向解码出来(依靠正向的暴力穷举)以及被碰撞模仿(王小云院士团队的"破解"能够根据MD5编码后串码模拟原始消息,即使它可能与原信息不同),类似的还有SHA1,因此衍生了SHA224、SHA256、SHA512等更多安全的散列算法
扫盲——加密那些事2021-05-14鱼鱼

造轮子0 浅谈设计模式

造轮子0 浅谈设计模式语义化接口的使用,譬如Aware等接口完全是语义性接口,不定义任何方法,只是用来约束一类行为 在Spring框架中有很多类似的接口 Wrapper,包装 ,相当于一个装饰器 XxxAware类表示在Spring中可感知,一般是类中需要用到Spring相关的对象时使用的 例如继承ApplicationContextAware接口后,实现setApplicationContext(ApplicationContext applicationContext)便会获得这个对象,与之对应的是XxxCapable类,继承他的类要负责实现相关的方get法负责生成Spring需要的对象
造轮子0 浅谈设计模式2019-05-26鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼

网络协议面面观:TCP/IP协议组,TCP与UDP

网络协议面面观:TCP/IP协议组,TCP与UDP日常中的网站应用交互绝大部分都是基于TCP/IP协议栈构建的,而TCP/IP就是通信常见的protocol(协议)组,是一类协议的简称,利用这篇文章总结一些常见的TCP/IP网络协议簇以及着重一下两个常见的传输层协议TCP和UDP,扫一下盲 OSI参考模型是ISO(国际标准化组织)指定的网络互联七层模型,与此对比的还有互联网界针对TCP/IP协议簇提出的四层模型 相比之下,OSI七层模型的应用面很窄,且是一种理论模型,TCP/IP则是一种实施标准 一般使用四层模型来表达协议归属,所以此处不详细介绍七层模型的内容,只是简单的与四层协议做对比,两者对比: 应用层 通过这个TCP/IP模型,整体的数据流向是发送方自顶向下然后在接收方自底向上的,即:
网络协议面面观:TCP/IP协议组,TCP与UDP2020-03-03鱼鱼

JVM的垃圾回收

JVM的垃圾回收此文介绍Java的基本垃圾回收机制 GC主要回收的是堆区,在堆中是有对象分代的,一个对象每“逃”过一次回收,对象代数便+1,新生对象被称作新生代(如果是占据内存较大的对象直接定义为老年代),当代数一定时对象将由新生代变为老年代 同时在Java1.7之前还有永久代,保存了一些静态变量 总之,内存回收只发生在新生代和老年代之间 除了分代,内存也有分区: 如图,是内存区域分配,其中Eden存储了新建的小对象,当回收时,将Eden中存活的对象转移到To Survivor区中,将From Survivor中的代数高(一般是15)的存活对象转移到老年代中,代数没达到阈值的存活对象转移到To Survivor中
JVM的垃圾回收2021-04-07鱼鱼

ES快速入门(I)——分析分词器

ES快速入门(I)——分析分词器本文旨在快速入门Elasticsearch的分词,包括分词分析器的创建和介绍对比等,请确保在阅读前已经搭建好完备的集群 文章基于es7.0+,与稍旧版本的主要区别是没有type 在讨论分词前,我们先看一下es整体创建倒排的分词过程: 我们常说的分词器指的其实是“分析器”analyzer,es将以上常用的逻辑封装起来成为analyzer,但是语义上的分词器是指上面的tokenizer 经过了三层处理后拿到了terms数组建立最终的倒排索引: character filter:一般不会用到这个filter,是在分词前对原有的文档字段内容做转换,例如去除html的标签提取出正文内容,按正则清除和替换某些内容,你可以指定及自定义0个到多个character filter,他们将共同存在,一个文本流在经过character filter处理后,依然是文本流;
ES快速入门(I)——分析分词器2020-09-01鱼鱼

AI大模型定价对比

AI大模型定价对比https://open.bigmodel.cn/pricing 火山方舟也提供端点(GLM3 0.001) https://openai.com/ja-JP/api/pricing/ 出入价格不一样 官网和火山都有 另外有免费版本的
AI大模型定价对比2024-12-18鱼鱼

算法:广度优先搜索(BFS)(最短路径)

算法:广度优先搜索(BFS)(最短路径)我们先看一个案例: 遍历一个树结构,按层次输出树的节点内容,即:欲求 A B C D E F 实现方式便是从根节点(A)向下遍历,先获取A,其次是A的子节点B和C,其次是B的子节点D…… 这种遍历树结构或者图结构的方法被称作广度优先搜索(BFS),与之对应的先遍历到最下层子节点的是深度优先 BFS核心采用队列的数据结构,例如上面的树结构中,解法为: A进队列->A出队列 B、C进队列->B出队列 D进队列 ->C出队列 E、F进队列-> D、E、F出队列 如果想要区分层次边缘,使用count参数即可 解法步骤(蓝色部分为已经处理完的节点):
算法:广度优先搜索(BFS)(最短路径)2020-06-05鱼鱼

算法:深度优先搜索(DFS)

算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
算法:深度优先搜索(DFS)2020-06-27鱼鱼

安全框架的使用:Shiro

安全框架的使用:ShiroShiro与Sping Security均是java的安全框架,主要用于处理用户身份验证和授权 常见场景为用户系统登录 Shiro易用性强,提供了认证,授权,加密,和会话管理功能 Shiro的三大核心组件 : Subject:即当前用户概念,不止代表着某用户,也可以是进程或任何可能的事物 SecurityManager:即所有Subject的管理者,可以把他看做是一个Shiro框架的全局管理组件,用于调度各种Shiro框架的服务 作用类似于SpringMVC中的DispatcherServlet,用于拦截所有请求并进行处理 Realm:Realm是用户的信息认证器和用户的权限认证器,我们需要自己来实现Realm来自定义的管理我们自己系统内部的权限规则
安全框架的使用:Shiro2019-09-29鱼鱼

分布式系统中的一致性算法和问题解决

分布式系统中的一致性算法和问题解决在撰写脑裂问题相关的博客时发现脑裂问题的产生原因在不同算法下的分布式系统各不相同,需要先大致了解一致性算法并针对性的解决 市面上有很多开源的分布式系统,他们的数据一致性算法不尽相同,例如k-v系统的祖师爷——zookeeper采用的是ZAB的算法,而最近流行的Consul是raft算法,不同数据中心server沟通的方式则是gossip协议 不同的协议和方式对选举和数据同步有不同的处理机制,利用这篇文章来对比常见的分布式一致性算法 一个系统可能会使用多个不同的一致性算法,以便于在不同的业务环节上有着各自更贴切的处理 ps:有种观点是一致性算法不是很准确,因为replica也能保证数据某种程度上具有一致性,有人称之为共识算法
分布式系统中的一致性算法和问题解决2021-03-13鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}