PyCharm与python快速开发
PyCharm与python快速开发Python语言作为“胶水语言”,简单易学,开发周期快,功能和扩展性强大,类库丰富 只依赖一门Java并不适用于所有情况,譬如快速开发一次性脚本(修复数据),通过使用Python效率更高,本篇文章旨在介绍本人快速入门Python的一些tips 注意,一些Python的基本语法在此不予介绍,推荐前往廖雪峰的博客查看,博客基于Python3.8版本 关于编译器等配置内容参考PyCharm帮助文档 从Python官网下载Python并安装,配置环境变量,安装PyCharm(这里 我们使用它作为IDE),这里略过 pip是python的包管理与安装工具,当你安装python后,pip也会随之被安装

2021-01-16鱼鱼
IO与NIO
IO与NIO我们都知道IO流传输,其实IO模型有很多,例如BIO、NIO、AIO等,传统的IO都是同步的 IO为各种流操作 IO操作分类 I IO操作分类 II 其中,输入流可以为InputStream和Reader,分别为字节流和字符流,对应地,输出流为OutputStream和Writer,具体的使用在此不详述 NIO是IO模型中后推出的新IO模型 NIO并不一定是多线程的,但是NIO是多管道的,利用缓冲作为中间介质进行数据传输,运用的其实是多路复用技术,它恰恰是通过减少线程数量从而减少上下文的频繁切换,提高性能 Channel:通道,相当于一个连接,不能直接输出数据,只能与Buffer交换数据

2019-05-11鱼鱼
tips
tips一些小tip: 向上转型,失去特征 定义相同对象,重写hash和(不是或)equal Vue.nextTick() 回调函数:在Vue(重新)渲染页面之后调用 vue绑定样式,我们会发现background-color 不能直接绑定 需写为backgroundColor 因为js中不允许出现‘-’ 存库之前,mysql会把换行符什么的过滤掉,使得出入不一致(应用场景:textarea存)解决:this.value.replace(/\n|\r\n/g,"
") linux下的mysql的表名是区分大小写的! 实现线程接口 Runnable 注解注入失败 注解注入失败 Linux下缺少部分字体,使用drawString会出问题(二维码模块),解决手段:从windows引入字体,因为不是什么主流问题所以就简单写一下,如果再碰到相关问题在详细的讲述一下
![tips]()
2019-05-08鱼鱼
安全框架的使用:Shiro
安全框架的使用:ShiroShiro与Sping Security均是java的安全框架,主要用于处理用户身份验证和授权 常见场景为用户系统登录 Shiro易用性强,提供了认证,授权,加密,和会话管理功能 Shiro的三大核心组件 : Subject:即当前用户概念,不止代表着某用户,也可以是进程或任何可能的事物 SecurityManager:即所有Subject的管理者,可以把他看做是一个Shiro框架的全局管理组件,用于调度各种Shiro框架的服务 作用类似于SpringMVC中的DispatcherServlet,用于拦截所有请求并进行处理 Realm:Realm是用户的信息认证器和用户的权限认证器,我们需要自己来实现Realm来自定义的管理我们自己系统内部的权限规则

2019-09-29鱼鱼
分布式系统一致性的分类
分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功

2021-03-13鱼鱼
Consul高级应用:多数据中心,模板与Client(Zuul)
Consul高级应用:多数据中心,模板与Client(Zuul)此文整理了Consul比较实用的高级功能:多数据中心,模板与维护模式 Consul提供了多数据中心联动的特性,目前看来多数据中心只是在查询阶段提现,各个数据中心的数据持久化和数据目录(k-v对)的更新不相干扰 也就是说,多数据中心的特性目前看来不能作为可用性的保障,当然 不排除可以手动热切换数据中心 最好判断是否使用多数据中心的情形是判断服务是否属于同一系统下,是否相同serviceId能提供相同的无状态服务,以下列举一些情景: 一个系统拥有多个域名的多套部署,提供版本一致的服务(建议使用多数据中心) 一个系统由多个服务器提供的不同服务提供(视服务具体情况,不建议使用多数据中心)

2020-01-28鱼鱼
Consul API文档
Consul API文档这是一个记录Consul 常用API的文档,因为Consul的跨语言性,所以http API在Consul中尤为重要,此文档基于Consul版本1.6.0的v1 API,有其他的变化请参阅Consul官方API文档 Consul API采用经典的rest图谱Consul API版本只有一个版本,所以所有的前缀都为 /v1/,返回值以Json格式传输,可以添加pretty参数格式化Json,以本地部署为例,整体的baseUrl为127.0.0.1:8500/v1/ 获取代理成员列表和基本信息,类似于指令'consul members' 开启维护模式后,该代理节点将会被标注为不可用,可以用于上线前临时屏蔽node的服务

2019-12-01鱼鱼
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析在Spring获取Context的源代码中,我们看到了对ClassUtil的方法调用,通过给定ClassName和ClassLoader进行Class的加载: ClassUtil.forName是仅供于Spring内部使用的获取Class对象的方法,来看一下源码: 首先 对于缓存的Class一块,在类的静态块中就能看出其逻辑: 在上面的resolvePrimitiveClassName方法中,先对长度做了一个判断,因为较长的packagename会影响执行的性能: 最终加载Class依旧是通过ClassLoader的,先来看一下获取ClassLoader的方法实现: 此处优先使用了ContextClassLoader作为 类加载器而非默认的AppClassLoader,在JVM源码解析 从 Launcher类浅谈ClassLoader中,提到了关于 类加载器的相关知识,使用ContextClassLoader是为了弥补双亲委派加载机制的对于自定义 类加载器的缺憾:那些自定义的 类加载器并没有机会上场,在使用了AppClassLoader后我们的自定义ClassLoader所加载的Class是无法被加载进去的,使用ContextClassLoader,我们可以在定义线程时,通过Thread的init方法(子线程调用,私有方法)或是setContextClassLoader直接指定使用自定义的ClassLoader
![JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析]()
2020-08-16鱼鱼
算法:递归
算法:递归递归算法主要寻找: 终止条件:递归的尽头 单级递归的行为:在一次递归里要做的事情 返回值:每次迭代要return的东西 例如 首先,假定方法是已经实现的 终止条件为:当当前节点(传了空节点)或下一节点(传了单节点)为空,则无需反转返回当前节点 递归行为:假定之后的节点均已实现反转,则需要将已经反转的尾部的next变为当前节点,而当前节点由于是第一个节点,其next为null 此处注意在反转前需要先留存反转后的尾部; 返回值:返回反转后的头结点
![算法:递归]()
2020-06-24鱼鱼
Rocket MQ的基本应用
Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息

2019-06-28鱼鱼
DDD领域下的架构模式——CQRS架构
DDD领域下的架构模式——CQRS架构//TODO
![DDD领域下的架构模式——CQRS架构]()
2021-06-24鱼鱼
分布式系统中的一致性算法和问题解决
分布式系统中的一致性算法和问题解决在撰写脑裂问题相关的博客时发现脑裂问题的产生原因在不同算法下的分布式系统各不相同,需要先大致了解一致性算法并针对性的解决 市面上有很多开源的分布式系统,他们的数据一致性算法不尽相同,例如k-v系统的祖师爷——zookeeper采用的是ZAB的算法,而最近流行的Consul是raft算法,不同数据中心server沟通的方式则是gossip协议 不同的协议和方式对选举和数据同步有不同的处理机制,利用这篇文章来对比常见的分布式一致性算法 一个系统可能会使用多个不同的一致性算法,以便于在不同的业务环节上有着各自更贴切的处理 ps:有种观点是一致性算法不是很准确,因为replica也能保证数据某种程度上具有一致性,有人称之为共识算法

2021-03-13鱼鱼