ooo

ooo拆箱:包装类-》基本数据类型 Integer Byte -127- 127是以缓存数组指向相同对象,之外的默认new 模块化 完全解耦 #预编译 $直接用 $内容手动干涉 Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor SimpleExecutor:每执行一次update或select,就开启一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor:执行update或select,以sql作为key查找Statement对象,存在就使用,不存在就创建,用完后,不关闭Statement对象,而是放置于Map内,供下一次使用
ooo2019-04-02鱼鱼

Kafka服务端集群原理

Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息
Kafka服务端集群原理2022-03-10鱼鱼

MYSQL的索引、引擎的实现原理和应用

MYSQL的索引、引擎的实现原理和应用本篇主要介绍数据库MySQL的索引实现原理,包括B+ Tree的原理,顺带提到了数据库的常用引擎 我们常见的数据库引擎就是InnoDB,还有另外一个常见一个引擎叫做MyISAM,这里着重介绍着两个引擎,执行show engines,可见MySQL所有的引擎如下: InnoDB采用行级锁,不会记录表中的数据个数,支持外键,高并发下使用事务的首选引擎,也是5.5之后MySQL的默认引擎(之前采用MyISAM),可以通过bin-log日志回滚数据,所以它比较适合处理数据量大的数据 PS:InnoDB最初不支持全文索引,在MySQL 5.6版本后添加了支持 MyISAM跟InnoDB截然相反,它采用表锁,记录了表的条目数,SELECT COUNT可以直接查看表中数据个数,支持FULLTEXT索引,不支持外键和事务,不能进行数据恢复操作,他比较适合频繁插入的数据,或是读操作远大于写操作时
MYSQL的索引、引擎的实现原理和应用2019-09-15鱼鱼

杂记:Spring与Springboot的本地化配置

杂记:Spring与Springboot的本地化配置利用这篇文章巩固一下Spring框架的基础,因为发现接触到的各种Spring的项目配置杂七杂八,从xml到注解,从properties到json到yaml,他们各有千秋,没有哪一种方式可以绝对取代另一种配置,所以在这里统一介绍一下各种配置方式的内容和利弊,以便随时查看 这并不是一篇Spring框架领域的教程,只是一种技术的补足或是一种投机取巧的学习手段 原始的Spring是采用纯xml进行配置的,我从github上找了一个规范经典的SSM项目,以下是一些常用的配置,从这里就可以看出xml的基本格式: ApplicationContext-test.xml jdbc.properties
杂记:Spring与Springboot的本地化配置2020-03-01鱼鱼

mysql前缀索引

mysql前缀索引有时候需要索引很长的字符列,这会让索引变得大且慢 通常可以索引开始的部分字符,这样可以大大节约索引空间,从而提高索引效率 但这样也会降低索引的选择性 前面已经说过,使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本 2.1因为前缀索引无法完全等于判断,只是前缀匹配,所以可能需要扫描的所以数会增加 2.2在特殊的查询里面 select id,email from SUser where email='zhangssxyz@xxx.com'; 前缀索引需要回到 id 索引再查一下,因为系统并不确定前缀索引的定义是否截断了完整信息 select count(distinct left(email,4))as L4,
mysql前缀索引2020-05-15yangwcn

数据库的存储过程、触发器和一些语法

数据库的存储过程、触发器和一些语法本篇文章讲述基于MySQL的存储过程触发器和一些相关的语法 在数据库中,存储过程是指将复用度很高并且不需要通过程序进行预编译的的SQL语句预先写好存放起来(此处所指的为用户定义在数据库中的存储过程),在需要时直接通过call调用 先看一个例子(注意,这不是创建存储过程的语句): 其中使用了日期相关的函数,DATE_SUB(CURDATE(),INTERCAL 10 DAY)代表当前时间前推十天 这个存储过程作用是查出十天前的数据然后将其删除 MySQL默认的分隔符是" ; ",这样一来定义存储过程就会因为 ; 被打断,所以在定义存储过程前后需要修改分隔符,使用DELIMITER关键字跟随分隔符,实际创建存储过程语句为:
数据库的存储过程、触发器和一些语法2019-06-12鱼鱼

多线程应用提高(II) 线程池

多线程应用提高(II) 线程池项目中,当发生并行操作时,一般都会用到线程池处理多线程任务,线程池的规则类似于数据库连接池,在此不予赘述 jdk自带线程池,此处主要讲述Spring框架自带的线程池ThreadPoolTaskExecutor 通过实现Runnable和Callable接口实现一个线程任务,从而能放入Executor进行线程管理 其中,Callable可以理解为带有返回值的Runnable,并且Callable需要实现的方法不是run()而是call(),该方法返回一个泛型对象 当我们把一个需要返回值的线程任务放进线程池后,线程池会返回一个Future对象,借助该对象,我们可以调用get()方法获取线程的状态,调用get()会阻塞当前线程直到返回结果
多线程应用提高(II) 线程池2020-02-25鱼鱼

[Quick Start]RedisTemplate的bean手动配置

[Quick Start]RedisTemplate的bean手动配置 有时我们可能需要手动配置Redis的连接,例如动态修改或是从特殊的参数中获取,而不是使用SpringBoot的自有配置,此篇文章意在快速指引redis的手动配置 基于Spring项目和Jedis的底层,使用RedisTemplate; 通过Maven引入相关依赖,可以的话spring-data-redis选择2.0.0以上版本,较低版本需要的依赖: 如果使用了Spring-boot并且要使用较高的版本(例如在2.1.0后才有的某些API-putIfAbsent带有超时时间的版本),我们直接修改starter的版本是不够的,二者版本并不对称,我们需要去掉其中的redis依赖并单独引入 建议保持良好的依赖管理习惯,显式的移除依赖,而不是任其覆盖,如:
[Quick Start]RedisTemplate的bean手动配置 2020-02-24鱼鱼

DDD领域下的架构模式——CQRS架构

DDD领域下的架构模式——CQRS架构//TODO
DDD领域下的架构模式——CQRS架构2021-06-24鱼鱼

算法:动态规划解法及例题

算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌
算法:动态规划解法及例题2020-03-11鱼鱼

使用Shiro和token进行无状态登录

使用Shiro和token进行无状态登录我们之前可以使用shiro实现登录,但这些都是基于session或是cookie实现的,这些只能用于单机部署的服务,或是分布式服务共享会话,显然后者开销极大,所以JWT(JSON Web Token)应运而生,JWT是一套约定好的认证协议,通过请求携带令牌来访问那些需鉴权的接口 我们在这里使用token,原理类似,但是规则更为简单,没有形式上的约束,只是在请求Head或是body中添加token用于校验用户身份,token是可以和会话共存的,此处我们使用Shiro的会话登录结合JWT来实现无状态登录,从而实现扫码登录和一般的接口访问授权 项目中,需要实现无状态登录(单点登录,SSO),但是同时也要保持Shiro本身自带的会话登录
使用Shiro和token进行无状态登录2020-03-22鱼鱼

分布式系统一致性的分类

分布式系统一致性的分类在分布式系统中的CAP理论中有C(一致性),大郅表示分布式系统中节点状态或数据具有一致的特性 但一致性有着不同的分类,例如常见的用于取代CAP理论的BASE中的E,最终一致性,不同于强一致性,他强调着事务最终状态趋于一致,但中间态可能不一致,利用此篇文章总结一下分布式系统的一致性分类 根据实际系统的要求,分布式系统的一致性可以大致分为四类: 严格一致性 强一致性(线性一致/原子一致) 顺序一致性 弱一致性(最终一致性) 一个理想概念上的一致性,节点间数据完全一致,对外可表现为单个节点 由于网络延迟和通信等因素的存在,现实中这种一致性不可能存在 强一致性要求在全局时钟相同的条件下,对任何节点的读都相同且等于最后一次写成功的数据,这也就意味着仅仅在所有节点同步到数据后才会被标记为同步成功
分布式系统一致性的分类2021-03-13鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}