基于Consul的服务注册与发现
基于Consul的服务注册与发现
注:文章基于Consul1.6.0版本,部分版本可能会有误差 本文中项目集成部分采用Java语言 consul官网,服务注册/发现是微服务架构中不可或缺的重要组件,起初服务都是单节点的甚至是单体服务,不保障高可用性,也不考虑服务的压力承载,服务之间调用单纯的通过接口访问(HttpClient/RestTemplate),直到后面出现了多个节点的分布式架构,起初的解决手段是在服务端负载均衡,同时在网关层收束接口,使不同的请求转发到对应不同端口上,这也是前后分离防止前端跨域的手段之一: 图中的B服务也可以是多节点,注册在nginx上面的 要命的是,nginx并不具有服务健康检查的功能,服务调用方在调用一个服务之前是无法知悉服务是否可用的,不考虑这一点分布式的架构高可用的目标就成了一个摆设,解决手段也很简单:对超时或是状态码异常的请求进行重试尝试,请求会被分发到其他可用节点,或者采用服务注册与发现机制察觉健康的服务
2020-01-10鱼鱼
tips
tips
一些小tip: 向上转型,失去特征 定义相同对象,重写hash和(不是或)equal Vue.nextTick() 回调函数:在Vue(重新)渲染页面之后调用 vue绑定样式,我们会发现background-color 不能直接绑定 需写为backgroundColor 因为js中不允许出现‘-’ 存库之前,mysql会把换行符什么的过滤掉,使得出入不一致(应用场景:textarea存)解决:this.value.replace(/\n|\r\n/g,"
") linux下的mysql的表名是区分大小写的! 实现线程接口 Runnable 注解注入失败 注解注入失败 Linux下缺少部分字体,使用drawString会出问题(二维码模块),解决手段:从windows引入字体,因为不是什么主流问题所以就简单写一下,如果再碰到相关问题在详细的讲述一下
2019-05-08鱼鱼
Spring源码解析(3) IoC容器配置读取和容器refresh
Spring源码解析(3) IoC容器配置读取和容器refresh
在文章Spring源码解析(I) 基于SSM看Spring的使用和Spring启动监听中,讲述了web容器启动后会触发的方法实现中生成Context的部分,回顾下核心方法: 我们已经分析到了0.处,他对我们生成的容器做了一个判断,对于web.xml监听初始化的Context,其生成的WebApplicationContext都是ConfigurableWebApplicationContext的子类,所以必然会进入if分支 首先通过loadParentContext先加载了父容器,默认是null 然后调用了configureAndRefreshWebApplicationContext方法进行初始化和配置项的读取
2020-08-09鱼鱼
Spring MVC源码和设计思想2 HandlerMapping
Spring MVC源码和设计思想2 HandlerMapping
系列传送门Spring MVC源码和设计思想1 DispatcherServlet-鱼鱼的博客 此篇篇幅很长,且慢慢道来 在之前一篇中,DispatchServlet的doDispatch()方法中有这么几行: 其中getHandler方法: handlerMappings是一个初始化过的List
,通过它获取HandlerExecutionChain HandlerExecutionChain存储了一个Object(其实就是HandleAdapter)和一个拦截器(HandlerInterceptor)数组,在doDispatch方法中执行了applyPreHandle和applyPostHandle方法,方法就是分别迭代调用了拦截器数组的postHandle和preHandle,同样地,发生异常时的triggerAfterCompletion也映射到了afterCompletion方法
2019-06-12鱼鱼
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听
Spring源码解析(1) 基于SSM看Spring的使用和Spring启动监听
查看源码的顺序就见仁见智了,比较普遍的做法是从IoC入手,了解容器注入的每一个环节,掌握大致的流程 由于使用的是Spring,所以在这里我们引入比较古老的xml配置文件进行bean的配置,首先定义一个bean: 配置描述bean的xml,核心只有一行: 这样一来就可以使用BeanFactory这个容器来注入bean并使用了: 本来有封装好的XmlBeanFactory,这一类现在已经被弃用了,所以采用了他的父类DefaultListableBeanFactory;当然,也可以使用更加方便和常用的ApplicationContext: 当然从xml文件读取bean的配置只是其中一种目前用的不多的加载方式,还有基于包扫描等加载bean的方法,此处仅为理解IoC的基本使用
2020-08-04鱼鱼
Java排坑指南(I)jmap jstack jstat等的使用
Java排坑指南(I)jmap jstack jstat等的使用
运用一些Java自带的可执行jar可以从内存的角度更轻松的排除项目中的问题,我们可能会遇到一些不常见却相对很致命的问题,例如: 某些web项目CPU跑到了100%并且飙高不下(一般来说,web应用都为IO密集应用,不太可能出现cpu高占用的情况) 项目中线程出现阻滞、阻塞(网络请求响应速度明显变慢,甚至因为死锁彻底出现阻塞等) 极可能由内存泄漏引发的不明原因的 OOM(没有预兆的或是基础逻辑问题的内存溢出) 当以上问题发生时,通过代码或是日志其实很难定位到原因所在,因为这一般是基于环境或资源导致的全局性问题,通常很难定位,这时可以通过使用Java自带的性能调优jar包更便捷的定位问题(如果没有配置环境变量,可以在jdk的bin目录下找到他们的jar包)
2020-11-28鱼鱼
Redis原理-源码解析:数据结构2 list
Redis原理-源码解析:数据结构2 list
所有原理实现基于Redis版本6.0.9 Redis中的list采用的是链表,在开始前,我们先看看list的最基本指令实现 t-list.c 由此可知,Redis的List底层数据结构都是基于quickList的 这是list所依赖的数据结构: quicklist.h 我们注意到其是由quicklistNode所构成的链表,而其中的数据实则为zl(ziplist)或是bookmark,在大多时候quicklistNode都使用ziplist存储数据 在上文中lpush执行了一个插入方法quicklistPush,在quicklist.c中有他的实现: quicklist真正存储数据的结构是ziplist,所以倒不如说,在Redis中,list是一个由ziplist节点构成的链表
2020-11-28鱼鱼
Spring MVC源码和设计思想3 拦截器HandlerInterceptor
Spring MVC源码和设计思想3 拦截器HandlerInterceptor
系列的源码基于Java Spring 框架5.1.x版本 HandlerInterceptor是SpringMVC框架提供的独有拦截器,本身只是一个接口,提供了三个方法,方法作用情况我已标出: 有关方法执行的具体时机,可以参考Spring MVC源码和设计思想1 DispatcherServlet文中的代码 上面使用到了default关键字,default关键字是Java 8的新特性之一(之前只有用在switch中),通过default可以在接口中定义一个方法的方法体,从而使该方法不必被强制继承 Java8中也添加了static用于修饰接口方法 主要是为了考虑接口重复方法的设计,比如多个类继承与同一个接口并且需要定义相同的方法实现时,用过default或static可以避免产生重复代码
2019-06-09鱼鱼
对多线程的执行效率探究——合理的任务并发拆分
对多线程的执行效率探究——合理的任务并发拆分
通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间
2019-12-09鱼鱼
网络时延、异步IO、Pipeline
网络时延、异步IO、Pipeline
通过使用多线程是能提高网络延迟带来的负面效应的,也就是在IO密集型的应用中(尤其是网络IO密集应用中),通过异步操作或能显著提高性能,本篇讨论相关问题 并不是异步(多线程)定能提高性能,有这种讨论也是发现经常有人会滥用多线程 通常会有一种说法:如果想要采用多线程的来执行一段任务,为了提高性能,假设服务器中有N个核心,推荐在CPU密集型的应用中启用N个线程,而在IO密集型的任务中启用2*N个线程 本人不是很认同此种说法,他只能代表一个大致的度量,在实际应用中几乎可以说完全不准确,一般来说,权衡系统资源与性能后,前者可能需要更少的线程数,而后者根据实际情况也许适宜分配更多的线程数 这个概念大家一般都不是很陌生,在此再次科普下:所谓IO密集型任务,即是任务的资源消耗多集中在系统IO上,这里的IO本来包括磁盘IO和网络IO等,但是磁盘IO涉及文件句柄操作等系统限制不在本篇讨论,所以此篇文章所提主要指网络IO,高网络IO也是绝大多数web应用的特性
2021-04-21鱼鱼
Elasticsearch 入门
Elasticsearch 入门
(注:本篇文章基于Elasticsearch7.7.0版本,由于版本的差异性造成的内容不一致我会尽量在文中标出,但是) Elasticsearch是基于Lucene扩展的全文搜索引擎,当我们有对大数据量的处理和搜索时,全文搜索引擎是最佳的选择,同时他提供了高扩展性、高可用性、RestFul风格的API和友好的分布式部署配置,在此我们不予详述 我们日常使用的数据库索引是数据库一种编排数据(逻辑上)从而加快查询的手段,我们暂且将这种索引方式称为正排索引,他通过对待搜索字符寻址从而找到对应的数据 但是这种索引方式对于模糊匹配会出现"断档"现象(模糊符号后的片段无法走索引查找),并且对于海量数据无论在存储上还是在查找上都略显吃力,于是在Elasticsearch中引入了倒排索引来加快查询速度
2020-03-06鱼鱼
常见树形结构
常见树形结构
树形结构 相关术语 结点(Node):表示树中的数据元素,由数据项和数据元素之间的关系组成 在图中,共有10个结点 结点的度(Degree of Node):结点所拥有的子树的个数,在图中,结点A的度为3 树的度(Degree of Tree):树中各结点度的最大值 在图中,树的度为3 叶子结点(Leaf Node):度为0的结点,也叫终端结点 在图中,结点E、F、G、H、I、J都是叶子结点 分支结点(Branch Node):度不为0的结点,也叫非终端结点或内部结点 在图中,结点A、B、C、D是分支结点 孩子(Child):结点子树的根 在图中,结点B、C、D是结点A的孩子
2019-03-15鱼鱼
网站地图
1
首页
博客
{{screen}}
第 {{page}} 页
博客索引
{{blog.title}}
{{blog.content}}
{{blog.createDate}} ◔ {{blog.timeline}}
{{blog.author}}
{{tag}}
{{blog.likeCount}}
{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
源码解析
造个轮子吧
多线程应用提高
问题探究
来做几道算法题
微服务架构实战
QuickStart
电子出版物
Java排坑指南
做点有趣的!
瞧瞧看看MySQL
{{taggroup.label}}
{{tag.value}}