ES快速入门(2)——Tokenizer、Reindex
ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
![ES快速入门(2)——Tokenizer、Reindex]()
2020-09-05鱼鱼
Spring MVC源码和设计思想序 综述
Spring MVC源码和设计思想序 综述Spring框架整体的流程:(图片引用请注明出处)

2019-06-05鱼鱼
Java的socket通信
Java的socket通信网络编程中,会使用socket通信 TCP/IP协议,即Transmission Control Protocol/Internet Protocol,传输控制协议/网际协议,他使用TCP/IP四层模型(实际开发中只涉及到四层模型,软件范畴涉及不到OSI七层参考模型): TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯 具有高度的可靠性 三次握手,即通信时,客户端和服务端共计要传输三次包,三次握手建立连接: 1.主机(客户端)发送 SYN=1(建立连接标识)和seq=x(序号),客户端进入SYN_SEND状态,等待服务端确认

2019-03-27鱼鱼
浅谈代理-动态代理
浅谈代理-动态代理我们可以很轻松的实现一个简单的代理 实现静态代理是个很简单的事情,最基础的代理只需要定义一个接口(虽然不是必要,但这显然才是标准的设计)、一个被代理类和一个代理类,例如: 定义一个接口: 一个实现类: 和一个代理类: 实际使用时,我们是去调用HelloWorldProxy的方法,其将作为HelloWorld的代理实现 此种方式直接实现的代理太过于死板,因为每一种代理行为都要制定一个代理类,我们熟知的很多基于代理的实现(譬如AOP、事务)显然不可能用静态代理的方式针对每一处类切点都覆写一个代理类,这种时候就需要动态代理 我们所熟知的相当多的框架均基于动态代理开发,JDK本身基于反射(java.lang.reflect)提供了动态代理,我们只需定义代理的行为,而对于代理类的范围并不是固定值
![浅谈代理-动态代理]()
2020-10-13鱼鱼
阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解
阻塞队列与Protobuf的Udp通信 - 基于Cat的代理(Agent)项目拆解CAT是美团点评的一个基于Java开发的异常和性能监控项目,github地址:https://github.com/dianping/cat 本篇文章不是对CAT本身的源码拆解,而是基于本人依赖CAT client开发的代理项目进行拆解,但是并不会纰漏任何技术细节 CAT当前已有很多不同语言的Client,当然暂且是不 CAT本身是通过CAT client收集数据并上报至CAT server,server会进行并,共有六种常见数据格式:Transaction、Event、Problem、Metric、HeartBeat、调用链标记,其实如果不考虑复杂的处理(譬如Metric是可以基于指标生成折线图,Problem可以根据具体的异常类型追溯到相应的会话Track)除去Transaction剩余的数据格式都可以理解为特殊的Event

2020-07-19鱼鱼
扫盲——加密那些事
扫盲——加密那些事扫盲加密解密算法 日常开发中我们经常接触MD5算法,以此进行简单的文件完整性校验或者是后台密码验证,MD5是最常见也是最简单快捷的散列算法,常用于参数或文件完整性校验,譬如网络请求发起方与接收方分别对参数做MD5编码,一旦不一致便判断请求被篡改从而拒绝该请求,从而保证信息安全,编码后的字符串是编码前文本的一个简要梗概,因此它也被称作是信息摘要算法 这个算法的特点就是不可逆,只用于信息准确性和防篡改的校验,当然,MD5作为老牌的散列算法,很多经典的编码已经可以被反向解码出来(依靠正向的暴力穷举)以及被碰撞模仿(王小云院士团队的"破解"能够根据MD5编码后串码模拟原始消息,即使它可能与原信息不同),类似的还有SHA1,因此衍生了SHA224、SHA256、SHA512等更多安全的散列算法

2021-05-14鱼鱼
ELK全家桶基本使用(I)文件收集Filebeat
ELK全家桶基本使用(I)文件收集FilebeatFilebeat是Elastic中的轻量文件收集系统,相比于功能更强悍的Logstash,当我们需求很单一,读取文件内容且对文件内容没有过多复杂处理时,最好使用FileBeat取代Logstash,以免造成不必要的内存开销 文档链接 Filebeat负责收集文件并发送给下游服务 核心行为包含输入、处理过滤和输出 当然也有集成好配置的模块,通过模块与Es和Kibana链接可以直接在Kibana上看到组件的可视化 同时不难看出Filebeat其实对数据库的支持不是很健壮 截止7.6版本,开源的Filebeat可支持以下几种消息输入类型: log 用得最多的输入类型; stdin 标准的输入,从process或是piepline读取(可理解为脚本运行通道直接输入),一旦配置了这种input方式,其他 input将不再生效文档地址;

2020-03-16鱼鱼
什么是web服务器?什么是web应用服务器?容器、以及服务器概念的区分(萌新向)
什么是web服务器?什么是web应用服务器?容器、以及服务器概念的区分(萌新向)本文主要是为了帮助萌新理解在web开发时遇到的关于web工作原理的疑问,由于本人水平十分有限,所以本文仅作为一般性参考,如有错误,欢迎批评指正OVO 首先说明的是,我们所谓的web服务器并不是物理上的服务器,而是建立在物理服务器上的一个web应用的运行环境,是一个软件服务器 这就好比前后端分离开发时,后端模块在物理服务器上的JVM,前端也需要一个“运行环境”进行工作,那么web服务器端概念就应运而生了,大概就好比下图 上图中拥有VUE经典的原谅色的web服务器就是我们前端运行的地方,可见web服务器的主要作用是给前端一个合理的运行环境,其实不只是看起来那么简单,web服务器还要处理代理、反向代理、跨域、并支持并发等等

2019-06-16Agostino
MySQL的数据锁 加在哪?
MySQL的数据锁 加在哪?此篇文章探讨MySQL数据库的锁,讨论MySQL各种语句将如何加锁,以及加锁的“效果”,主要针对默认的InnoDb引擎 基于MySQL5.6之后的版本 有心力的可以直接看MySQL官方文档,说的更为详细:14.7.3由InnoDB中的不同SQL语句设置的锁 按类型分,MySQL有锁: 行锁,最普通的锁,其实是加在索引上的锁 表锁,直接加在整张表的锁,一旦上锁整张表的操作都会比较锁 间隙锁,又称GAP锁,用于在涉及范围查询时给莫须有的位置加锁,防止并发插入等操作出现数据不一致(诸如幻读)的问题 间隙锁之间是不会冲突的 行锁与Gap锁合称Next-Key锁 间隙锁只能锁住间隙,即间隙锁不能指定具体的数据范围,将会锁上整个间隙

2021-02-05鱼鱼
ELK实战(Ⅰ) 基于ELK整合分布式业务日志
ELK实战(Ⅰ) 基于ELK整合分布式业务日志大多情况下,我们可能都习惯了使用linux指令查看日志,很多时候一句简简单单的tail、grep能定位绝大多数问题 但是面临复杂的目录结构和分布式系统产生的“分布式日志文件”,如果还要我们一个一个去查日志,就会耗费很多没必要的时间 可以利用ELK这套组件快速搭建一个日志系统 注意此文仅针对可能很多情况下格式不确定的业务日志,对于某些组件日志我们有更好的可视化实践方式,可以参考此系列的其他文章 对于一个日志系统,我们要确认我们的诉求,在不同的场景下采用不同的收集方式: 是否是分布式系统需要合并多个节点的日志 如果需要,则需要用分布式组件收集并合并日志,这也是一个日志系统最基本的要求;

2020-03-14鱼鱼
多线程应用提高(I) 多线程常见问题、常用方法和关键字
多线程应用提高(I) 多线程常见问题、常用方法和关键字我们一般熟识的创建多线程方式即为继承Thread类或是实现Runnable接口,重写run()方法,还有创建线程池实现 手动定义一个线程任务(作为内部类)的方法现在已经不被提倡,所以遇到可能存在并发的复杂任务时,一般采用线程池来实现 一些设计并发常用并且容易被混淆的方法们: static sleep() : Thread类的静态方法,阻塞当前正在线程,不释放锁; wait() : 当前线程暂停,并释放锁且暂时无法重新获得锁,必须绑定当前对象内容锁(如使用Synchronized的同步块),知道其他线程调用notify()/notifyAll()才有机会获得锁继续执行; yield() : 当前线程暂停,此时时间片分配给其他线程,但是不会分配给优先级更低的线程;
![多线程应用提高(I) 多线程常见问题、常用方法和关键字]()
2019-12-07鱼鱼
算法:深度优先搜索(DFS)
算法:深度优先搜索(DFS)在算法:广度优先搜索(BFS)(最短路径)中,我们提到了按照广度优先遍历的搜索方式,使用队列作为常规的搜索方式,与之相对应的为深度优先搜索(DFS) 如果说BFS对应着树结构的前中后序遍历 但是DFS相对解法较为多元一些,有些时候不得不使用递归进行求解 同时,有很多求解只是进行图的遍历,不关心是广度还是深度优先,其解都是相同的 在这里我们暂且不讨论的基于栈而是侧重基于递归的遍历实现 对于二叉树,最常见的遍历方式有前序(又称 先序)遍历、中序遍历、后序遍历、层次遍历 前中后序只为取得的值先后顺序不同,即递归有先后 依赖栈实现的的深度优先是前序遍历 以下是一个二叉树的前序遍历代码实现:
![算法:深度优先搜索(DFS)]()
2020-06-27鱼鱼