算法:动态规划解法及例题

算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌
算法:动态规划解法及例题2020-03-11鱼鱼

浅析RPC框架Thrift

浅析RPC框架ThriftThrift是由Facebook开发的 RPC远程调用的框架,使用独有的Thrift协议进行可跨语言的远程调用 有点类似protobuf 无论使用何种语言,首先要准备Thrift编译环境,可以去官网下载相应的Thrift执行文件,下文均以Windows为例 下载后可以选择性的配置环境变量,最终在shell中可执行Thrift 在项目中,预先准备好libthrift依赖,maven写法: 例如: 定义一个testService.thrift(idl文件名不重要),一般都会定义在resources的thrift文件夹下: 这里定义了两个方法,分别返回字符串和int类型,在thrift的idl中,对于变量的定义如下:
浅析RPC框架Thrift2022-03-04鱼鱼

造轮子2 灵活运用反射

造轮子2 灵活运用反射//TODO
造轮子2 灵活运用反射2019-05-25鱼鱼

分布式系统中的一致性算法和问题解决

分布式系统中的一致性算法和问题解决在撰写脑裂问题相关的博客时发现脑裂问题的产生原因在不同算法下的分布式系统各不相同,需要先大致了解一致性算法并针对性的解决 市面上有很多开源的分布式系统,他们的数据一致性算法不尽相同,例如k-v系统的祖师爷——zookeeper采用的是ZAB的算法,而最近流行的Consul是raft算法,不同数据中心server沟通的方式则是gossip协议 不同的协议和方式对选举和数据同步有不同的处理机制,利用这篇文章来对比常见的分布式一致性算法 一个系统可能会使用多个不同的一致性算法,以便于在不同的业务环节上有着各自更贴切的处理 ps:有种观点是一致性算法不是很准确,因为replica也能保证数据某种程度上具有一致性,有人称之为共识算法
分布式系统中的一致性算法和问题解决2021-03-13鱼鱼

盘点redis中特殊的数据类型 HyperLogLog Bitmap

盘点redis中特殊的数据类型 HyperLogLog Bitmap 基数计数(cardinality counting)通常用来统计一个集合中不重复的元素个数,例如统计某个网站的UV,或者用户搜索网站的关键词数量 数据分析、网络监控及数据库优化等领域都会涉及到基数计数的需求 要实现基数计数,最简单的做法是记录集合中所有不重复的元素集合S_uSu,当新来一个元素x_ixi,若S_uSu中不包含元素x_ixi,则将x_ixi加入S_uSu,否则不加入,计数值就是S_uSu的元素数量 这种做法存在两个问题: 当统计的数据量变大时,相应的存储内存也会线性增长 当集合S_uSu变大,判断其是否包含新加入元素x_ixi的成本变大 大数据量背景下,要实现基数计数,首先需要确定存储统计数据的方案,以及如何根据存储的数据计算基数值;另外还有一些场景下需要融合多个独立统计的基数值,例如对一个网站分别统计了三天的UV,现在需要知道这三天的UV总量是多少,怎么融合多个统计值
盘点redis中特殊的数据类型 HyperLogLog Bitmap 2022-01-12鱼鱼

Spring MVC源码和设计思想2 HandlerMapping

Spring MVC源码和设计思想2 HandlerMapping系列传送门Spring MVC源码和设计思想1 DispatcherServlet-鱼鱼的博客 此篇篇幅很长,且慢慢道来 在之前一篇中,DispatchServlet的doDispatch()方法中有这么几行: 其中getHandler方法: handlerMappings是一个初始化过的List,通过它获取HandlerExecutionChain HandlerExecutionChain存储了一个Object(其实就是HandleAdapter)和一个拦截器(HandlerInterceptor)数组,在doDispatch方法中执行了applyPreHandle和applyPostHandle方法,方法就是分别迭代调用了拦截器数组的postHandle和preHandle,同样地,发生异常时的triggerAfterCompletion也映射到了afterCompletion方法
Spring MVC源码和设计思想2 HandlerMapping2019-06-12鱼鱼

Spring MVC源码和设计思想3 拦截器HandlerInterceptor

Spring MVC源码和设计思想3 拦截器HandlerInterceptor系列的源码基于Java Spring 框架5.1.x版本 HandlerInterceptor是SpringMVC框架提供的独有拦截器,本身只是一个接口,提供了三个方法,方法作用情况我已标出: 有关方法执行的具体时机,可以参考Spring MVC源码和设计思想1 DispatcherServlet文中的代码 上面使用到了default关键字,default关键字是Java 8的新特性之一(之前只有用在switch中),通过default可以在接口中定义一个方法的方法体,从而使该方法不必被强制继承 Java8中也添加了static用于修饰接口方法 主要是为了考虑接口重复方法的设计,比如多个类继承与同一个接口并且需要定义相同的方法实现时,用过default或static可以避免产生重复代码
Spring MVC源码和设计思想3 拦截器HandlerInterceptor2019-06-09鱼鱼

[Quick Start]RedisTemplate的bean手动配置

[Quick Start]RedisTemplate的bean手动配置 有时我们可能需要手动配置Redis的连接,例如动态修改或是从特殊的参数中获取,而不是使用SpringBoot的自有配置,此篇文章意在快速指引redis的手动配置 基于Spring项目和Jedis的底层,使用RedisTemplate; 通过Maven引入相关依赖,可以的话spring-data-redis选择2.0.0以上版本,较低版本需要的依赖: 如果使用了Spring-boot并且要使用较高的版本(例如在2.1.0后才有的某些API-putIfAbsent带有超时时间的版本),我们直接修改starter的版本是不够的,二者版本并不对称,我们需要去掉其中的redis依赖并单独引入 建议保持良好的依赖管理习惯,显式的移除依赖,而不是任其覆盖,如:
[Quick Start]RedisTemplate的bean手动配置 2020-02-24鱼鱼

用Quartz 写定时任务

用Quartz 写定时任务Quartz是OpenSymphony开源组织在Job scheduling领域的一个开源项目,是一款清新友好的任务调度框架 Quartz两大基本功能是job和SimpleTrigger(作业和触发器) 核心的是Scheduler类 有以下几个相关类: Scheduler:定时任务调度; Job:任务类需要实现的接口; JobDetail:Job的实例,被Scheduler执行的是JobDetail,而不是Job; Trigger:触发Job的执行; JobBuilder:定义和创建JobDetail实例的接口; TriggerBuilder:定义和创建Trigger实例的接口;
用Quartz 写定时任务2019-06-18鱼鱼

Consul高级应用:多数据中心,模板与Client(Zuul)

Consul高级应用:多数据中心,模板与Client(Zuul)此文整理了Consul比较实用的高级功能:多数据中心,模板与维护模式 Consul提供了多数据中心联动的特性,目前看来多数据中心只是在查询阶段提现,各个数据中心的数据持久化和数据目录(k-v对)的更新不相干扰 也就是说,多数据中心的特性目前看来不能作为可用性的保障,当然 不排除可以手动热切换数据中心 最好判断是否使用多数据中心的情形是判断服务是否属于同一系统下,是否相同serviceId能提供相同的无状态服务,以下列举一些情景: 一个系统拥有多个域名的多套部署,提供版本一致的服务(建议使用多数据中心) 一个系统由多个服务器提供的不同服务提供(视服务具体情况,不建议使用多数据中心)
Consul高级应用:多数据中心,模板与Client(Zuul)2020-01-28鱼鱼

AI大模型定价对比

AI大模型定价对比https://open.bigmodel.cn/pricing 火山方舟也提供端点(GLM3 0.001) https://openai.com/ja-JP/api/pricing/ 出入价格不一样 官网和火山都有 另外有免费版本的
AI大模型定价对比2024-12-18鱼鱼

分布式系统中的CAP原则与BASE原则

分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性
分布式系统中的CAP原则与BASE原则2019-09-29鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}