分布式系统中的CAP原则与BASE原则
分布式系统中的CAP原则与BASE原则没有十全十美的分布式系统,分布式的痛点就在于各个节点状态的统一,CAP和BASE便是描述它的状态 本文中的分布式系统不仅指一套全是无状态的应用的服务系统,单纯依靠共享资源(如多个无状态的服务共用数据库或NoSQL而不在内存或是本身的服务容器中存储任何数据)运转的服务不是纯粹的分布式系统,分布式系统中一般需要包含有状态的服务(如主从同步的Mysql、多机哨兵模式的Redis、设置会话共享的分布式Tomcat服务) 图A 分布式架构雏形 ( 试想在上图中,若是网关通过A分区对数据做出了修改,此时还没有写入数据库但是A分区的缓存做出了调整,在分区容错的情况下A不能直接与B通信,那A与B分区就会失去一致性

2019-09-29鱼鱼
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用
Redis高级特性:事务和pipelined以及在RedisTemplate中的应用Redis Pipelined是由Client提供的(是防止client端 阻塞的操作)一种请求redis的方式 Redis本身具有很高的吞吐量,因此性能最大的考察便是网络状况,如果应用到redis的网络状况不好,每次请求都将会出现轻微的 阻塞和延迟,这种延迟对于批量请求是很可怕的,譬如要进行数千次数据插入,或是批量获取数据时,我们就需要用到Pipelined Pipelined可以将多个请求无 阻塞的发出并按顺序将请求结果“打包”返回,这有点类似于并发请求,可以有效地利用等待结果的 阻塞时间 注意,Pipelined并不能保证原子性,即pipelined执行的内容可能会被其他客户端或是线程的指令"插队",若想要原子性操作,需要使用事务
![Redis高级特性:事务和pipelined以及在RedisTemplate中的应用]()
2020-06-21鱼鱼
ES快速入门(2)——Tokenizer、Reindex
ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
![ES快速入门(2)——Tokenizer、Reindex]()
2020-09-05鱼鱼
算法:动态规划解法及例题
算法:动态规划解法及例题经历过很多算法题,其中最常见的解题方法便是动态规划 动态规划(dynamic programming,即DP),是一种常见的求解最优解的方案,他通过将复杂的问题拆分为单阶段的小问题求解,核心思想是递推,通过简单基础的解一步步接近最优解 对于一个算法问题,总有一个相对令人满意的解,但却不一定是我们想要的最优解,譬如在解决动态规划中最经典的背包问题时,有些人首先想到简单省心的贪心算法,取价值最高或是性价比最高的物品组合,这种方案得到的很有可能是最优解,但贪心的算法并不适用于动态规划领域,若是物品中恰好有能将背包塞得很满的组合,而采用贪心策略却浪费了很多背包空间 其实贪心策略本身更多也是一种“相对最优”的解决方案,而很少是真正的最优,这一点请务必斟酌

2020-03-11鱼鱼
数据库的并发、锁机制与MVCC
数据库的并发、锁机制与MVCC在日常开发中,经常遇到数据库进行高并发操作的情况,但是我们处理并发一般都只在代码范畴而并不处理具体的数据库操作,这是因为数据库对基本的数据库操作做了锁处理,让我们可以忽略这一层的并发问题 详细可以参考Mysql的官方文档 注意:这一篇博客是针对MySQL数据库,且实用默认的 引擎InnoDb,使用其他数据库可能存在略微的差异 MySQL默认的数据库引擎InnoDB中Autocommit值为0(即自动提交事务)执行SQL语句的时候,每一条SQL语句都是一条单独的事务,所以并不存在并发的问题,数据库的锁机制已经做了很好的处理 但是当我们开启事务时,若不加处理,可能会产生一系列并发带来的问题

2021-01-24鱼鱼
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析
JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析在Spring获取Context的源代码中,我们看到了对ClassUtil的方法调用,通过给定ClassName和ClassLoader进行Class的加载: ClassUtil.forName是仅供于Spring内部使用的获取Class对象的方法,来看一下源码: 首先 对于缓存的Class一块,在类的静态块中就能看出其逻辑: 在上面的resolvePrimitiveClassName方法中,先对长度做了一个判断,因为较长的packagename会影响执行的性能: 最终加载Class依旧是通过ClassLoader的,先来看一下获取ClassLoader的方法实现: 此处优先使用了ContextClassLoader作为 类加载器而非默认的AppClassLoader,在JVM源码解析 从 Launcher类浅谈ClassLoader中,提到了关于 类加载器的相关知识,使用ContextClassLoader是为了弥补双亲委派加载机制的对于自定义 类加载器的缺憾:那些自定义的 类加载器并没有机会上场,在使用了AppClassLoader后我们的自定义ClassLoader所加载的Class是无法被加载进去的,使用ContextClassLoader,我们可以在定义线程时,通过Thread的init方法(子线程调用,私有方法)或是setContextClassLoader直接指定使用自定义的ClassLoader
![JVM源码解析(2) ContextClassLoader与ClassUtil.forName()方法浅析]()
2020-08-16鱼鱼
Rocket MQ的基本应用
Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息

2019-06-28鱼鱼
浅谈锁机制、主流锁设计方案
浅谈锁机制、主流锁设计方案本文旨在探讨通用的锁机制实现逻辑,以Java中常见的锁实现为例 本文提到的锁,是指通过限制并发/并行访问所添加的安全措施,本质上是通过限制线程/进程同时更改数据或是读取数据与写入数据产生时序差从而造成数据问题 锁机制中,有一些常见特性: 可重入性 指同一线程/进程携带相同的标识可以反复多次加锁,每次加锁和释放锁对应的重入次数+1/-1; 读写锁/独享共享 是锁的不同运作模式,分为读写锁,读锁与写锁、写锁与写锁是互斥的,但多个线程/进程可以同时对一个逻辑添加读锁,独享共享是另一种叫法 公平性 锁分为 公平锁和非 公平锁, 公平锁指锁释放和获取的顺序严格按照索取的顺序,非 公平锁则是等待锁的对象共同进行锁释放机会的争抢
![浅谈锁机制、主流锁设计方案]()
2024-10-15鱼鱼
多线程应用提高(II) 线程池
多线程应用提高(II) 线程池项目中,当发生并行操作时,一般都会用到线程池处理多线程任务,线程池的规则类似于数据库连接池,在此不予赘述 jdk自带线程池,此处主要讲述Spring框架自带的线程池ThreadPoolTaskExecutor 通过实现Runnable和Callable接口实现一个线程任务,从而能放入Executor进行线程管理 其中,Callable可以理解为带有返回值的Runnable,并且Callable需要实现的方法不是run()而是call(),该方法返回一个泛型对象 当我们把一个需要返回值的线程任务放进线程池后,线程池会返回一个Future对象,借助该对象,我们可以调用get()方法获取线程的状态,调用get()会阻塞当前线程直到返回结果

2020-02-25鱼鱼
算法1
算法1给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水) 木板组成水桶装水,定义高度为一数组,间隔为1,求水桶最大容量如[1,5,1,2,6,3]为15,解题思路:自两边木板向中间遍历求容量,每次相对短的木板向内移动,共比较n-2次 将水灌满,求灌满后的高度,其实就是从最高点向左右两个方向向中间遍历,依次求经过的最大值,这样一来就是从最高点向两侧递减的,再减去柱子原高度即可 容易理解的想法还有按高度分层计算,但是时间复杂度过高

2019-03-14Sherlock
Kafka服务端集群原理
Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息

2022-03-10鱼鱼
Springboot源码原理:从启动方法看配置加载
Springboot源码原理:从启动方法看配置加载首先看一个springboot项目的配置,我们可以定义一个application.yml,对于不同的环境有时也通过profile配置项指定不同的配置文件(譬如application-dev.yml),也可以通过命令行覆写具体的VM options配置项(举个栗子,启动时执行 java -jar xxx.jar --server.port=8080),此文讲解这些配制的读取原理 整体配置项的优先级从高到低为: 命令行配置; 系统属性(System.getProperties()) 系统环境变量 jar包外的主配置文件(带有) jar包内的主配置文件 jar包外的次要配置文件(由spring.profile指定的)

2021-03-09鱼鱼