Servlet线程模型与异步请求
Servlet线程模型与异步请求本篇文章主要意在整理Servlet的线程模型,帮助大家更好的理解请求在广泛使用的web容器下(基于Servlet的Tomcat服务器)的运行原理 Servlet是Java的服务端框架,可以利用Servlet来编写一个动态服务器(动态主要是区别于单纯的html构建的静态页面),主要基于Http协议 通过Servlet提供的API,我们可以轻松的处理网络请求和与其他服务建立连接(相比于基于Socket编程),并且基于Java使得它具有跨平台性、灵活性 简单的说Servlet就是一个封装了操作网络请求的API,它将Http网络请求简化为更容易处理的对象 从某种意义上讲,当我们不适用任何web框架(例如Spring mvc和Struts2)时,我们编写的每一个页面(jsp或是继承于HttpServlet的类)也都可以说是一个Servlet
![Servlet线程模型与异步请求]()
2020-03-23鱼鱼
Spring MVC源码和设计思想3 拦截器HandlerInterceptor
Spring MVC源码和设计思想3 拦截器HandlerInterceptor系列的源码基于Java Spring 框架5.1.x版本 HandlerInterceptor是SpringMVC框架提供的独有拦截器,本身只是一个接口,提供了三个方法,方法作用情况我已标出: 有关方法执行的具体时机,可以参考Spring MVC源码和设计思想1 DispatcherServlet文中的代码 上面使用到了default关键字,default关键字是Java 8的新特性之一(之前只有用在switch中),通过default可以在接口中定义一个方法的方法体,从而使该方法不必被强制继承 Java8中也添加了static用于修饰接口方法 主要是为了考虑接口重复方法的设计,比如多个类继承与同一个接口并且需要定义相同的方法实现时,用过default或static可以避免产生重复代码
![Spring MVC源码和设计思想3 拦截器HandlerInterceptor]()
2019-06-09鱼鱼
杂记:Spring与Springboot的本地化配置
杂记:Spring与Springboot的本地化配置利用这篇文章巩固一下Spring框架的基础,因为发现接触到的各种Spring的项目配置杂七杂八,从xml到注解,从properties到json到yaml,他们各有千秋,没有哪一种方式可以绝对取代另一种配置,所以在这里统一介绍一下各种配置方式的内容和利弊,以便随时查看 这并不是一篇Spring框架领域的教程,只是一种技术的补足或是一种投机取巧的学习手段 原始的Spring是采用纯xml进行配置的,我从github上找了一个规范经典的SSM项目,以下是一些常用的配置,从这里就可以看出xml的基本格式: ApplicationContext-test.xml jdbc.properties

2020-03-01鱼鱼
Rocket MQ的基本应用
Rocket MQ的基本应用消息队列,常用于应用间通信 本篇文章基于RocketMQ官方文档 Topic:消息分类,依靠topic来定义消息类型 Tag:消息二级分类,可选,同个topic用不同的tag区分消息类别 Message : 泛指MQ所传送的消息体 Producer:消息生产者 Consumer:消息消费者 Name Server:有点类似于zookeeper,负责服务的注册与发现,维护Broker与Topic的映射关系 Broker:负责消息的存储与生产者消费者消息接收与分发,与Name Server建立长连接,保持心跳上传负责的topic信息 Producer:消息生产者,从Name Server获取Broker对应Topic映射关系,然后与Broker建立连接发送消息

2019-06-28鱼鱼
ooo
ooo拆箱:包装类-》基本数据类型 Integer Byte -127- 127是以缓存数组指向相同对象,之外的默认new 模块化 完全解耦 #预编译 $直接用 $内容手动干涉 Mybatis有三种基本的Executor执行器,SimpleExecutor、ReuseExecutor、BatchExecutor SimpleExecutor:每执行一次update或select,就开启一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor:执行update或select,以sql作为key查找Statement对象,存在就使用,不存在就创建,用完后,不关闭Statement对象,而是放置于Map
内,供下一次使用
2019-04-02鱼鱼
分布式系统中的一致性算法和问题解决
分布式系统中的一致性算法和问题解决在撰写脑裂问题相关的博客时发现脑裂问题的产生原因在不同算法下的分布式系统各不相同,需要先大致了解一致性算法并针对性的解决 市面上有很多开源的分布式系统,他们的数据一致性算法不尽相同,例如k-v系统的祖师爷——zookeeper采用的是ZAB的算法,而最近流行的Consul是raft算法,不同数据中心server沟通的方式则是gossip协议 不同的协议和方式对选举和数据同步有不同的处理机制,利用这篇文章来对比常见的分布式一致性算法 一个系统可能会使用多个不同的一致性算法,以便于在不同的业务环节上有着各自更贴切的处理 ps:有种观点是一致性算法不是很准确,因为replica也能保证数据某种程度上具有一致性,有人称之为共识算法
2021-03-13鱼鱼
Java的socket通信
Java的socket通信网络编程中,会使用socket通信 TCP/IP协议,即Transmission Control Protocol/Internet Protocol,传输控制协议/网际协议,他使用TCP/IP四层模型(实际开发中只涉及到四层模型,软件范畴涉及不到OSI七层参考模型): TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯 具有高度的可靠性 三次握手,即通信时,客户端和服务端共计要传输三次包,三次握手建立连接: 1.主机(客户端)发送 SYN=1(建立连接标识)和seq=x(序号),客户端进入SYN_SEND状态,等待服务端确认
2019-03-27鱼鱼
算法:广度优先搜索(BFS)(最短路径)
算法:广度优先搜索(BFS)(最短路径)我们先看一个案例: 遍历一个树结构,按层次输出树的节点内容,即:欲求 A B C D E F 实现方式便是从根节点(A)向下遍历,先获取A,其次是A的子节点B和C,其次是B的子节点D…… 这种遍历树结构或者图结构的方法被称作广度优先搜索(BFS),与之对应的先遍历到最下层子节点的是深度优先 BFS核心采用队列的数据结构,例如上面的树结构中,解法为: A进队列->A出队列 B、C进队列->B出队列 D进队列 ->C出队列 E、F进队列-> D、E、F出队列 如果想要区分层次边缘,使用count参数即可 解法步骤(蓝色部分为已经处理完的节点):
2020-06-05鱼鱼
Redis原理-源码解析:数据结构3 hash
Redis原理-源码解析:数据结构3 hash 所有原理实现基于Redis版本6.0.9 hash在Redis中可以认为是套了一层的string,当然,对hash来说没有数字类型 让我们依旧通过基本命令看看hash的基本数据结构实现 在set方法中我们看到了hash的初始创建过程,一个hash最开始是zipist 想要了解ziplist可以看Redis原理-源码解析:数据结构2 list ,是为节省内存而生的链表格式 所以其实在使用ziplist时其查询的时间复杂度不是遵循hash的近似O(1),而是O(n),但是在数据量不大时,这种性能的损失微乎其微,并且能预见到大多数使用hash的场景都不会存储过多的字段 所以优先使用了更节省内存空间的ziplist
2020-11-29鱼鱼
什么是web服务器?什么是web应用服务器?容器、以及服务器概念的区分(萌新向)
什么是web服务器?什么是web应用服务器?容器、以及服务器概念的区分(萌新向)本文主要是为了帮助萌新理解在web开发时遇到的关于web工作原理的疑问,由于本人水平十分有限,所以本文仅作为一般性参考,如有错误,欢迎批评指正OVO 首先说明的是,我们所谓的web服务器并不是物理上的服务器,而是建立在物理服务器上的一个web应用的运行环境,是一个软件服务器 这就好比前后端分离开发时,后端模块在物理服务器上的JVM,前端也需要一个“运行环境”进行工作,那么web服务器端概念就应运而生了,大概就好比下图 上图中拥有VUE经典的原谅色的web服务器就是我们前端运行的地方,可见web服务器的主要作用是给前端一个合理的运行环境,其实不只是看起来那么简单,web服务器还要处理代理、反向代理、跨域、并支持并发等等
2019-06-16Agostino
动态路由数据源(多租户)解决方案
动态路由数据源(多租户)解决方案当下有很多服务都使用了多数据源,或是出于跨库查询或是分库分表、读写分离等,多数据源解决方案早已不是稀罕事 常见的解决方案包括使用多数据源框架(例如Shareding-Jdbc)、在数据库端做代理(例如MYCAT)、对于固定的几个数据源连接,也可以直接手动配置多个数据源,这种相关处理有很多源码,我在github上也有简单的实现:fishstormX/dynamicDataSource: 动态数据源的实现,基于maven自定义多模块骨架 Spring Boot2.0.x,本文实现的是动态数据源,主要为了解决 多租户问题(不同的用户群组有不同的数据源和配置,强调数据的隔离性) 本文技术能实现的是动态数据源,基于Spring框架,即能够将注入的Datasource根据租户不同使用不同的来源,同时根据租户增减动态的增删和缓存数据源(增是因为会有新增租户可能使用到项目启动后的数据源,减是因为租户数不可预料,不可直接缓存所有的数据源)
2021-01-07鱼鱼
算法:Trie(前缀树、字典树)
算法:Trie(前缀树、字典树)前缀树(Trie,又称字典树)是一种功能倾向性很强的数据结构,通过对词汇的前缀做数结构,很容易实现查询、前缀词推荐系统,例如,我们将如下多个单词放入树结构中: [apple,bat,bee,cat,cap,car],最终生成的前缀树结构为 通过深度递归,我们很容易用较小的时间复杂度判断出符合前缀的单词在不在 假设Trie的字符集范围是固定的,并且范围不大,例如是上面的纯英文字符,假设忽略大小写总共为26个,可以选择使用桶结构进行存储,即每一个Node都是一个长度为26的bucket数组 这样看来,Trie的结构并不复杂,只通过循环不断提高深度进行遍历即可 假定字符集的范围是未知的,或者范围很大(比如中文汉字),就要放弃使用bucket结构,而是通过一个Map维护,这里使用树结构TreeMap,key为相应节点的字符
2021-01-19鱼鱼