Kafka服务端集群原理

Kafka服务端集群原理kafka是家喻户晓的消息队列,也因“纯粹”而闻名(高性能高吞吐、扩展较少较为简单),此篇文章整理Kafka的基本架构,将按照Kafka的版本迭代分别展示架构的演进(截至版本3.0) 我们在这里暂且只讨论Kafka服务端,对于生产者和消费者的逻辑简单带过 扫盲一下Kafka的部分概念: Producer mq生产者通用叫法 作为消息的生产者,在生产完消息后需要将消息投送到指定的目的地(某个topic的某个partition) Producer可以根据指定选择partition的算法或者是随机方式来选择发布消息到哪个partition; Consumer mq生产者通用叫法 消息消费者,向Kafka broker读取消息的客户端;,负责订阅和消费消息
Kafka服务端集群原理2022-03-10鱼鱼

对多线程的执行效率探究——合理的任务并发拆分

对多线程的执行效率探究——合理的任务并发拆分通常,我们选择多线程执行任务有两个理由,一是复杂任务采用多线程处理能够在发生并发时让用户减少等待也能防止阻塞,一是充分利用空闲时间,提高任务处理的效率,就后者而言,此处探讨不考虑客户端并发是否有必要把一个任务拆分成多线程来处理 为了探究多线程的效率问题,我做了一个实验,将不同种类的任务分别用单线程和多线程执行,同时也试验了不同种类的锁机制 测试基于Java 8的版本,希望看到总结可以直接点击到文末 开启五个线程执行任务,设定了足够次数的循环输出,输出的数字和当前线程,利用System.currentTimeMillis()统计任务用时 (代码略)以下是相同任务在不同环境下执行多次的平均执行时间
对多线程的执行效率探究——合理的任务并发拆分2019-12-09鱼鱼

MySQL的数据锁 加在哪?

MySQL的数据锁 加在哪?此篇文章探讨MySQL数据库的锁,讨论MySQL各种语句将如何加锁,以及加锁的“效果”,主要针对默认的InnoDb引擎 基于MySQL5.6之后的版本 有心力的可以直接看MySQL官方文档,说的更为详细:14.7.3由InnoDB中的不同SQL语句设置的锁 按类型分,MySQL有锁: 行锁,最普通的锁,其实是加在索引上的锁 表锁,直接加在整张表的锁,一旦上锁整张表的操作都会比较锁 间隙锁,又称GAP锁,用于在涉及范围查询时给莫须有的位置加锁,防止并发插入等操作出现数据不一致(诸如幻读)的问题 间隙锁之间是不会冲突的 行锁与Gap锁合称Next-Key锁 间隙锁只能锁住间隙,即间隙锁不能指定具体的数据范围,将会锁上整个间隙
MySQL的数据锁 加在哪?2021-02-05鱼鱼

项目异常问题解决

项目异常问题解决这天 程序抛出了一个WARN日志: createSecureRandom Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [43,844] milliseconds. 这意味着SHA1PRNG算法导致项目启动多花费了43秒,这是基于SHA-1算法实现且保密性较强的伪随机数生成器 1.从tomcat层面上解决: 在catalina.sh中加入这么一行:-Djava.security.egd=file:/dev/./urandom 2.从java层面解决 打开$JAVA_PATH/jre/lib/security/java.security这个文件,将下面的内容:
项目异常问题解决2019-02-28鱼鱼

Java中的协程(虚拟线程)探究

Java中的协程(虚拟线程)探究在Java最新的LTS版本 21中,终于实装了协程这一特性 当然,在这些诸如python、golang等轻量级语言中被称为协程的东西,在Java中有个全新的代号——虚拟线程,为了将协程与线程做区分,在Java21中,原Thread被称之为平台线程 下文中,将统一使用线程/协程的方式称呼 我们都知道,Java中引入了线程的概念,区别于系统中的进程 作为并发执行的最小单元,在一定的条件下,使用多个线程同时运作可以有效提高程序的运转效率 而线程这一能力源于系统本身而并非JVM 之所以说是在一定条件下,是因为受限于机器配置情况(CPU的运作机制、核心数),线程的同时运作并不能线性的提升运行性能,单个cpu并不能同时处理多线程任务,实际的运作方式是基于时间片分片,各个线程抢占式执行代码,这样能减少一些无效的io等待(例如网络io、磁盘io实际是会阻塞等待io结果),同时在多核心场景下也能有效利用cpu
Java中的协程(虚拟线程)探究2024-10-28鱼鱼

ELK全家桶基本使用(I)文件收集Filebeat

ELK全家桶基本使用(I)文件收集FilebeatFilebeat是Elastic中的轻量文件收集系统,相比于功能更强悍的Logstash,当我们需求很单一,读取文件内容且对文件内容没有过多复杂处理时,最好使用FileBeat取代Logstash,以免造成不必要的内存开销 文档链接 Filebeat负责收集文件并发送给下游服务 核心行为包含输入、处理过滤和输出 当然也有集成好配置的模块,通过模块与Es和Kibana链接可以直接在Kibana上看到组件的可视化 同时不难看出Filebeat其实对数据库的支持不是很健壮 截止7.6版本,开源的Filebeat可支持以下几种消息输入类型: log 用得最多的输入类型; stdin 标准的输入,从process或是piepline读取(可理解为脚本运行通道直接输入),一旦配置了这种input方式,其他 input将不再生效文档地址;
ELK全家桶基本使用(I)文件收集Filebeat2020-03-16鱼鱼

浅谈锁机制、主流锁设计方案

浅谈锁机制、主流锁设计方案本文旨在探讨通用的锁机制实现逻辑,以Java中常见的锁实现为例 本文提到的锁,是指通过限制并发/并行访问所添加的安全措施,本质上是通过限制线程/进程同时更改数据或是读取数据与写入数据产生时序差从而造成数据问题 锁机制中,有一些常见特性: 可重入性 指同一线程/进程携带相同的标识可以反复多次加锁,每次加锁和释放锁对应的重入次数+1/-1; 读写锁/独享共享 是锁的不同运作模式,分为读写锁,读锁与写锁、写锁与写锁是互斥的,但多个线程/进程可以同时对一个逻辑添加读锁,独享共享是另一种叫法 公平性 锁分为 公平锁和非 公平锁, 公平锁指锁释放和获取的顺序严格按照索取的顺序,非 公平锁则是等待锁的对象共同进行锁释放机会的争抢
浅谈锁机制、主流锁设计方案2024-10-15鱼鱼

Spring的事务

Spring的事务Spring事务将一系列操作绑定为具有原子性的操作,此篇文章讲基于Spring提供的声明式事务 MySQL的事务我们已经明白,Spring的事务是委派了ORM框架来解决相应的问题,在jdbc中,体现的就是在Mybatis框架中,体现的就是SqlSession的建立到提交 声明式事务:在方法或是实现类上加上以下注解: 其中一些常用参数: propagation:配置事务传播行为;(后面详细解读) isolation:事务隔离级别; timeout:超时时间; roolbackFor:导致事务回滚的异常类设置; readOnly:boolean,是否只读 有七种事务传播行为,用来决策当发生事务嵌套时的解决方案
Spring的事务2019-07-18鱼鱼

mysql orderby排序

mysql orderby排序where 字段和orderby字段组成一个联合索引,这个样一个普通业务的order只需要通过这个索引就能确定排序顺序,不需要额外的临时表来计算字段的排序 可以通过配置max_length_for_sort_data改变mysql判断采取方式 全字段排序 将命中的行的所有要查询的结果集都放到排序的临时表内,排序后将数据结果集返回 rowid 排序 将命中的行的排序字段和主键id放到临时表内排序,再根据排序后的主键id进行一次回表查询 虽然有联合索引,但是当where的条件不止一个时候,order by就会失效,可以采取多次查询结果,然后在服务中排序的方式来解决问题
mysql orderby排序2020-05-17yangwcn

过滤器、拦截器、监听器和AOP

过滤器、拦截器、监听器和AOP用这篇文章来梳理一下这些杂七杂八的Spring MVC中的基础概念,顺便讲一下在项目中的一些基本使用和常见应用(其实主要是针对AOP的),至于使用他们实现具体的功能,后续可能会独立写出来(谁知道呢) 执行的顺序: 项目初始化:filter:init()->filter:doFilter()->preHandle->Controller->postHandle->afterComplition ->destory() 过滤器(Filter),由servlet提供,拦截URL(其实是servlet),经过代理,执行想要的方法,最基本的使用是集成Filter类并重写方法,因为是从url层面上直接拦截,可以有很多用途,比如用于用户身份校验,比如某些页面需要有用户权限才能访问,就可以利用过滤器进行拦截,一些安全框架的鉴权本身也是过滤器的实现
过滤器、拦截器、监听器和AOP2020-03-01鱼鱼

ES快速入门(2)——Tokenizer、Reindex

ES快速入门(2)——Tokenizer、Reindex本篇介绍es提供的几种分词分析器和常用的开源分词分析器 es默认的分词器,中规中矩的按照 Unicode Standard Annex #29分词,一般的小写符号会忽略,对于中文等字符会逐字分割,参数max_token_length表示最大的字符长度,再切分后会继续按此切分 譬如: 会分词为: 一个无视语义,按照字符尽量收集全索引的分词方式,会前后叠加的按符号位分词,参数: 会分词为: nGram的分词很全面,但如此夸张的方式用不好会导致索引doc过大,同时使查询效率偏低 分词规则很简单,无其余规则的按空格分词: 会分词为: 在standard的基础上能够有效拆分出邮箱和url地址的格式,同样有max_token_length这一参数:
ES快速入门(2)——Tokenizer、Reindex2020-09-05鱼鱼

造轮子2 灵活运用反射

造轮子2 灵活运用反射//TODO
造轮子2 灵活运用反射2019-05-25鱼鱼
网站地图
1
首页 博客 {{screen}} 第 {{page}} 页
博客索引
{{blog.createDate}} ◔ {{blog.timeline}} 小头像 {{blog.author}} {{tag}}
{{blog.likeCount}}{{blog.commentCount}}
分类下暂时没有文章哦!
主题分类
{{taggroup.label}} 

{{tag.value}}